Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.05616
Research on Biomedical Engineering
Original Article

Realistic deformable 3D numeric phantom for transcutaneous ultrasound

Cardoso, Fernando Mitsuyama; Moraes, Matheus Cardoso; Furuie, Sérgio Shiguemi

Downloads: 2
Views: 867

Abstract

Introduction: Numerical phantoms are important tools to design, calibrate and evaluate several methods in various image-processing applications, such as echocardiography and mammography. We present a framework for creating ultrasound numerical deformable phantoms based on Finite Element Method (FEM), Linear Isomorphism and Field II. The proposed method considers that the scatterers map is a property of the tissue; therefore, the scatterers should move according to the tissue strain. Methods: First, a volume representing the target tissue is loaded. Second, parameter values, such as Young’s Modulus, scatterers density, attenuation and scattering amplitudes are inserted for each different regions of the phantom. Then, other parameters related to the ultrasound equipment, such as ultrasound frequency and number of transducer elements, are also defined in order to perform the ultrasound acquisition using Field II. Third, the size and position of the transducer and the pressures that are applied against the tissue are defined. Subsequently, FEM is executed and deformation is computed. Next, 3D linear isomorphism is performed to displace the scatterers according to the deformation. Finally, Field II is carried out to generate the non-deformed and deformed ultrasound data. Results: The framework is evaluated by comparing strain values obtained the numerical simulation and from the physical phantom from CIRS. The mean difference between both phantoms is lesser than 10%. Conclusion: The acoustic and deformation outcomes are similar to those obtained using a physical phantom. This framework led to a tool, which is available online and free of charges for educational and research purposes.    

Keywords

Ultrasound images, Simulation, Numerical phantoms, Elasticity, Linear isomorphism.

References

Anton H, Rorres C. Elementary linear algebra: applications version. 9th ed. New York: John Wiley & Sons, Inc.; 2005 

Baldewsing RA, de Korte CL, Schaar JA, Mastik F, van der Steen AFW. A finite element model for performing intravascular ultrasound elastography of human atherosclerotic coronary arteries. Ultrasound in Medicine & Biology. 2004; 30(6):803-13. PMid:15219960. http://dx.doi.org/10.1016/j.ultrasmedbio.2004.04.005. 

Bhatti SN, Sridhar-Keralapura M. A novel breast software phantom for biomechanical modeling of elastography. Medical Physics. 2012; 39(4):1748-68. PMid:22482599. http://dx.doi.org/10.1118/1.3690467. 

Browne JE, Ramnarine KV, Watson AJ, Hoskins PR. Assessment of the acoustic properties of common tissue-mimicking test phantoms. Ultrasound in Medicine & Biology. 2003; 29(7):1053-60. PMid:12878252. http://dx.doi.org/10.1016/S0301-5629(03)00053-X. 

Bude RO, Adler RS. An easily made, low-cost, tissue-like ultrasound phantom material. Journal of Clinical Ultrasound. 1995; 23(4):271-3. PMid:7797668. http://dx.doi.org/10.1002/jcu.1870230413. 

Cardoso FM, Moraes MC, Furuie SS. A framework to create realistic IVUS phantoms for different intraluminal pressures. In: Proceedings of the 2011 Computing in Cardiology; 2011 Sept 18-21; Hangzhou, China. New York: IEEE; 2011. p. 333-6. 

Cardoso FM, Moraes MC, Furuie SS. Realistic IVUS image generation in different intraluminal pressures. Ultrasound in Medicine & Biology. 2012; 38(12):2104-19. PMid:23062368. http://dx.doi.org/10.1016/j.ultrasmedbio.2012.08.005. 

Céspedes EI, Ophir J, Ponnekanti H, Maklad N. Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrasonic Imaging. 1993; 15(2):73-88. PMid:8346612. http://dx.doi.org/10.1177/016173469301500201. 

CIRS Tissue Simulation & Phantom Technology. CIRS elasticity QA phantom datasheet: model 049 & 049A [Internet]. Virginia: CIRS Tissue Simulation & Phantom Technology; 2013. [cited 2017 Jan 05]. Available from: http://www.cirsinc.com/products/all/74/elasticity-qa-phantoms/?details=specs 

Culjat MO, Goldenberg D, Tewari P, Singh RS. A review of tissue substitutes for ultrasound imaging. Ultrasound in Medicine & Biology. 2010; 36(6):861-73. PMid:20510184. http://dx.doi.org/10.1016/j.ultrasmedbio.2010.02.012. 

Doyley MM. Model-based elastography: a survey of approaches to the inverse elasticity problem. Physics in Medicine and Biology. 2012; 57(3):R35-73. PMid:22222839. http://dx.doi.org/10.1088/0031-9155/57/3/R35. 

Fang Q, Boas DA. Tetrahedral mesh generation from volumetric binary and grayscale images. In: Proceedings of the 2009 IEEE Biomedical Imaging Symposium: From Nano to Macro; 2009 June 28-July 1; Boston, MA, USA. New York: IEEE; 2009. p. 1142-5. 

Hoskins PR. Simulation and validation of arterial ultrasound imaging and blood flow. Ultrasound in Medicine & Biology. 2008; 34(5):693-717. PMid:18329162. http://dx.doi.org/10.1016/j.ultrasmedbio.2007.10.017. 

Jensen JA, Nikolov SI. Fast simulation of ultrasound images. In: Proceedings of the 2000 IEEE Ultrasonics Symposium; 2000 Oct 22-25; San Juan, USA. New York: IEEE; 2000. v. 2. p. 1721-4. 

Jensen JA, Svendsen NB. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1992; 39(2):262-7. PMid:18263145. http://dx.doi.org/10.1109/58.139123. 

Kallel F, Ophir J. A least-squares strain estimator for elastography. Ultrasonic Imaging. 1997; 19(3):195-208. PMid:9447668. http://dx.doi.org/10.1177/016173469701900303. 

Kattan PI. MATLAB guide to finite elements: an interactive approach. 2nd ed. New York: Springer Berlin Heidelberg; 2008. 

King DM, Moran CM, McNamara JD, Fagan AJ, Browne JE. Development of a vessel-mimicking material for use in anatomically realistic Doppler flow phantoms. Ultrasound in Medicine & Biology. 2011; 37(5):813-26. PMid:21497719. http://dx.doi.org/10.1016/j.ultrasmedbio.2011.02.012. 

Korte CL, Céspedes EI, van der Steen AFW. Influence of catheter position on estimated strain in intravascular elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1999; 46(3):616-25. PMid:18238462. http://dx.doi.org/10.1109/58.764848. 

Kurnaz MN, Dokur Z, Ölmez T. An incremental neural network for tissue segmentation in ultrasound images. Computer Methods and Programs in Biomedicine. 2007; 85(3):187-95. PMid:17275135. http://dx.doi.org/10.1016/j.cmpb.2006.10.010. 

Latifoğlu F. A novel approach to speckle noise filtering based on artificial bee colony algorithm: an ultrasound image application. Computer Methods and Programs in Biomedicine. 2013; 111(3):561-9. PMid:23806680. http://dx.doi.org/10.1016/j.cmpb.2013.05.009. 

Le Floc’h S, Ohayon J, Tracqui P, Finet G, Gharib AM, Maurice RL, Cloutier G, Pettigrew RI. Vulnerable atherosclerotic plaque elasticity reconstruction based on a segmentation-driven optimization procedure using strain measurements: Theoretical framework. IEEE Transactions on Medical Imaging. 2009; 28(7):1126-37. PMid:19164080. http://dx.doi.org/10.1109/TMI.2009.2012852. 

Liang Y, Zhu H, Friedman MH. Estimation of the transverse strain tensor in the arterial wall using IVUS image registration. Ultrasound in Medicine & Biology. 2008; 34(11):1832-45. PMid:18620800. http://dx.doi.org/10.1016/j.ultrasmedbio.2008.04.005. 

Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT. Mechanical properties of model atherosclerotic lesion lipid pools. Arteriosclerosis, Thrombosis, and Vascular Biology. 1994; 14(2):230-4. PMid:8305413. http://dx.doi.org/10.1161/01.ATV.14.2.230. 

Maurice RL, Ohayon J, Finet G, Cloutier G. Adapting the lagrangian speckle model estimator for endovascular elastography: Theory and validation with simulated radio-frequency data. The Journal of the Acoustical Society of America. 2004; 116(2):1276-86. PMid:15376693. http://dx.doi.org/10.1121/1.1771615. 

Ophir J, Céspedes EI, Garra B, Ponnekanti H, Huang Y, Maklad N. Elastography: ultrasonic imaging of tissue strain and elastic modulus in vivo. European Journal of Ultrasound. 1996; 3(1):49-70. http://dx.doi.org/10.1016/0929-8266(95)00134-4. 

Ragazzoni F, Deandrea M, Mormile A, Ramunni MJ, Garino F, Magliona G, Motta M, Torchio B, Garberoglio R, Limone P. High diagnostic accuracy and interobserver reliability of real-time elastography in the evaluation of thyroid nodules. Ultrasound in Medicine & Biology. 2012; 38(7):1154-62. PMid:22542262. http://dx.doi.org/10.1016/j.ultrasmedbio.2012.02.025. 

Reddy JN. An introduction to the finite element method. 3rd ed. New York: McGraw-Hill; 2006. 

Universidade de São Paulo – USP. Escola Politécnica. Laboratório de Engenharia Biomédica. IVUSSim website [Internet]. São Paulo: Escola Politécnica, USP; 2012. [cited 2017 Jan 05]. Available from: http://www.leb.usp.br/UltraSSim 

Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: its basis & fundamentals. 6th ed. Great Britain: Elsevier; 2010a. 

Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: for solid and structural mechanics. 6th ed. Great Britain: Elsevier; 2010b.

59e9e4c20e8825fe709aaad6 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections