Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.180040
Research on Biomedical Engineering
Original article

The temporal stability of recurrence quantification analysis attributes from chronic atrial fibrillation electrograms   

Tiago Paggi de Almeida, Fernando Soares Schlindwein, João Salinet, Xin Li, Gavin Shen-Wei Chu, Jiun Haur Tuan, Peter James Stafford, G André Ng4, Diogo Coutinho Soriano 

Downloads: 0
Views: 691

Abstract

Introduction: The temporal behavior of atrial electrograms (AEGs) collected during persistent atrial fibrillation (persAF) directly affects ablative treatment outcomes. We investigated different durations of AEGs collected during persAF using recurrence quantification analysis (RQA). Methods: 797 bipolar AEGs with different durations (from 0.5 s to 8 s) from 18 patients were investigated. Four RQA-based attributes were evaluated based on AEG durations: determinism (DET); recurrence rate (RR); laminarity (LAM); and diagonal lines’ entropy (ENTR). The Spearman correlation (ρ) between each duration versus 8 s was calculated. AEG classification was performed following the CARTO criteria (Biosense Webster) and receiving operating characteristic (ROC) curves were created for the RQA variables. Results: The RQA variables successfully discriminated the AEGs: the area under the ROC curves were as high as 0.70 for AEGs with 3.5 s or greater. Three types of AEGs were found using these variables: normal, fractionated and temporally unstable. The number of unstable AEGs decreased with longer AEG segments. Different AEG durations significantly affected the RQA variables (P<0.0001), with no statistical difference between the durations 6 s, 7 s and 8 s for DET, LAM and ENTR, and no difference between 7 s and 8 s for RR (P<0.0001). AEGs with 3 s or longer have shown ρ ≥ 80% for all variables. Conclusion: The RQA variables have been shown effective in the characterization of AEGs collected during persAF with a shorter duration than current recommendations, which motivates their use for the characterization of atrial substrate during persAF ablation. 

Keywords

Persistent atrial fibrillation, Fractionated electrograms, Catheter ablation, Electrophysiology mapping, Recurrence plots, Recurrence quantification analysis. 

References

Acharya UR, Fujita H, Sudarshan VK, Ghista DN, Lim WJE, Koh JE. Automated prediction of sudden cardiac death risk using kolmogorov complexity and recurrence quantification analysis features extracted from hrv signals. In: IEEE International Conference on Systems, Man, and Cybernetics; 2015 Oct 9-12; Hong Kong. USA: IEEE; 2015. p. 1110-5. http://dx.doi.org/10.1109/SMC.2015.199. 

Almeida TP, Chu GS, Salinet JL, Vanheusden FJ, Li X, Tuan JH, Stafford PJ, Ng GA, Schlindwein FS. Minimizing discordances in automated classification of fractionated electrograms in human persistent atrial fibrillation. Med Biol Eng Comput. 2016; 54(11):1695-706. http://dx.doi.org/10.1007/s11517-016-1456-2. PMid:26914407.

Almeida TP, Chu GS, Bell MJ, Li X, Salinet JL, Dastagir N, Tuan JH, Stafford PJ, André Ng G, Schlindwein FS. The temporal behavior and consistency of bipolar atrial electrograms in human persistent atrial fibrillation. Med Biol Eng Comput. 2018a; 56(1):71-83. http://dx.doi.org/10.1007/s11517-017-1667-1. PMid:28674778.

Almeida TP, Schlindwein FS, Salinet J, Li X, Chu GS, Tuan JH, Stafford PJ, André Ng G, Soriano DC. Characterization of human persistent atrial fibrillation electrograms using recurrence quantification analysis. Chaos. 2018b; 28(8):085710-1-12. http://dx.doi.org/10.1063/1.5024248. PMid:30180613.

Arce H, Fuentes A, González GH. Recurrence analysis of cardiac restitution in human ventricle. In: Webber JC, Ioana C, Marwan N, editors. Recurrence plots and their quantifications: expanding horizons. Cham: Springer; 2016. (Springer Proceedings In Physics). http://dx.doi.org/10.1007/978-3-319-29922-8_9. 

Bakker JMT, Wittkampf FHM. The pathophysiologic basis of fractionated and complex electrograms and the impact of recording techniques on their detection and interpretation. Circ Arrhythm Electrophysiol. 2010; 3(2):204-13. http://dx.doi.org/10.1161/CIRCEP.109.904763. PMid:20407105.

Buch E, Share M, Tung R, Benharash P, Sharma P, Koneru J, Mandapati R, Ellenbogen KA, Shivkumar K. Long-term clinical outcomes of focal impulse and rotor modulation for treatment of atrial fibrillation: a multicenter experience. Heart Rhythm. 2016; 13(3):636-41. http://dx.doi.org/10.1016/j.hrthm.2015.10.031. PMid:26498260.

Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Nielsen JC, Curtis AB, Davies DW, Day JD, d’Avila A, de Groot NMSN, Di Biase L, Duytschaever M, Edgerton JR, Ellenbogen KA, Ellinor PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haissaguerre M, Helm RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchlinski FE, Michaud GF, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Tondo 

C, Tsao HM, Verma A, Wilber DJ, Yamane T. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017; 14(10):e275-444. http://dx.doi.org/10.1016/j.hrthm.2017.05.012. PMid:28506916.

Clarnette JA, Brooks AG, Mahajan R, Elliott AD, Twomey DJ, Pathak RK, Kumar S, Munawar DA, Young GD, Kalman JM, Lau DH, Sanders P. Outcomes of persistent and long-standing persistent atrial fibrillation ablation: a systematic review and meta-analysis. Europace. 2018; 20(FI_3):f366-76. http://dx.doi.org/10.1093/europace/eux297. PMid:29267853.

Cochet H, Dubois R, Yamashita S, Al Jefairi N, Berte B, Sellal J-M, Hooks D, Frontera A, Amraoui S, Zemoura A, Denis A, Derval N, Sacher F, Corneloup O, Latrabe V, Clément-Guinaudeau S, Relan J, Zahid S, Boyle PM, Trayanova NA, Bernus O, Montaudon M, Laurent F, Hocini M, Haïssaguerre M, Jaïs P. Relationship between fibrosis detected on late gadolinium-enhanced cmr and re-entrant activity assessed with ecgi in human persistent atrial fibrillation. JACC Clin Electrophysiol. 2018; 4(1):17-29. http://dx.doi.org/10.1016/j.jacep.2017.07.019. PMid:29479568.

Frontera A, Takigawa M, Martin R, Thompson N, Cheniti G, Massoullié G, Duchateau J, Wielandts JY, Teijeira E, Kitamura T, Wolf M, Al-Jefairi N, Vlachos K, Yamashita S, Amraoui S, Denis A, Hocini M, Cochet H, Sacher F, Jaïs P, Haïssaguerre M, Derval N. Electrogram signature of specific activation patterns: analysis of atrial tachycardias at high-density endocardial mapping. Heart Rhythm. 2018; 15(1):28-37. http://dx.doi.org/10.1016/j.hrthm.2017.08.001. PMid:28797676.

Gepstein L, Hayam G, Benhaim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart: in vitro and in vivo accuracy results. Circulation. 1997; 95(6):1611-22. http://dx.doi.org/10.1161/01.CIR.95.6.1611. PMid:9118532.

Groot N, van der Does L, Yaksh A, Lanters E, Teuwen C, Knops P, Van de Woestijne P, Bekkers J, Kik C, Bogers A, Allessie M. Direct proof of endo-epicardial asynchrony of the atrial wall during atrial fibrillation in humans. Circ Arrhythm Electrophysiol. 2016; 9(5):e003648. http://dx.doi.org/10.1161/CIRCEP.115.003648. PMid:27103089.

Haissaguerre M, Hocini M, Denis A, Shah AJ, Komatsu Y, Yamashita S, Daly M, Amraoui S, Zellerhoff S, Picat MQ, Quotb A, Jesel L, Lim H, Ploux S, Bordachar P, Attuel G, Meillet V, Ritter P, Derval N, Sacher F, Bernus O, Cochet H, Jais P, Dubois R. Driver domains in persistent atrial fibrillation. Circulation. 2014; 130(7):530-8. http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005421. PMid:25028391.

Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Métayer P, Clémenty J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998; 339(10):659-66. http://dx.doi.org/10.1056/NEJM199809033391003. PMid:9725923.

Hummel JP, Baher A, Buck B, Fanarjian M, Webber CL Jr, Akar JG. A method for quantifying recurrent patterns of local wavefront direction during atrial fibrillation. Comput Biol Med. 2017; 89:497-504. http://dx.doi.org/10.1016/j.compbiomed.2017.08.027. PMid:28889077.

Jadidi AS, Duncan E, Miyazaki S, Lellouche N, Shah AJ, Forclaz A, Nault I, Wright M, Rivard L, Liu X, Scherr D, Wilton SB, Sacher F, Derval N, Knecht S, Kim SJ, Hocini M, Narayan S, Haïssaguerre M, Jaïs P. Functional nature of electrogram fractionation demonstrated by left atrial high-density mapping. Circ Arrhythm Electrophysiol. 2012; 5(1):32-42. http://dx.doi.org/10.1161/CIRCEP.111.964197. PMid:22215849.

Jalife J, Berenfeld O, Mansour M. Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc Res. 2002; 54(2):204-16. http://dx.doi.org/10.1016/S0008-6363(02)00223-7. PMid:12062327.

Kimata A, Yokoyama Y, Aita S, Nakamura H, Higuchi K, Tanaka Y, Nogami A, Hirao K, Aonuma K. Temporally stable frequency mapping using continuous wavelet transform analysis in patients with persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2018; 29(4):514-22. http://dx.doi.org/10.1111/jce.13440. PMid:29369468.

Konings KT, Kirchhof CJ, Smeets JR, Wellens HJ, Penn OC, Allessie MA. High-density mapping of electrically induced atrial fibrillation in humans. Circulation. 1994; 89(4):1665-80. http://dx.doi.org/10.1161/01.CIR.89.4.1665. PMid:8149534.

Krueger MW, Schulze WH, Rhode KS, Razavi R, Seemann G, Dossel O. Towards personalized clinical in-silico modeling of atrial anatomy and electrophysiology. Med Biol Eng Comput. 2013; 51(11):1251-60. http://dx.doi.org/10.1007/s11517-012-0970-0. PMid:23070728.

Marwan N, Carmen Romano M, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Phys Rep. 2007; 438(5):237-329. http://dx.doi.org/10.1016/j.physrep.2006.11.001.

Marwan N, Wessel N, Meyerfeldt U, Schirdewan A, Kurths J. Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys Rev E Stat Nonlin Soft Matter Phys. 2002; 66(2):026702. PMid:12241313.

Marwan N. How to avoid potential pitfalls in recurrence plot based data analysis. Int J Bifurcat Chaos. 2011; 21(04):1003-17. http://dx.doi.org/10.1142/S0218127411029008.

Mindlin GM, Gilmore R. Topological analysis and synthesis of chaotic time series. Physica D. 1992; 58(1):229-42. http://dx.doi.org/10.1016/0167-2789(92)90111-Y.

Nademanee K, Mckenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, Vasavakul T, Khunnawat C, Ngarmukos T. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol. 2004; 43(11):2044-53. http://dx.doi.org/10.1016/j.jacc.2003.12.054. PMid:15172410.

Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol. 2012; 60(7):628-36. http://dx.doi.org/10.1016/j.jacc.2012.05.022. PMid:22818076.

Navoret N, Jacquir S, Laurent G, Binczak S. Detection of complex fractionated atrial electrograms using recurrence quantification analysis. IEEE Trans Biomed Eng. 2013; 60(7):1975-82. http://dx.doi.org/10.1109/TBME.2013.2247402. PMid:23428610.

Ravelli F, Faes L, Sandrini L, Gaita F, Antolini R, Scaglione M, Nollo G. Wave similarity mapping shows the spatiotemporal distribution of fibrillatory wave complexity in the human right atrium during paroxysmal and chronic atrial fibrillation. J Cardiovasc Electrophysiol. 2005; 16(10):1071-6. http://dx.doi.org/10.1111/j.1540-8167.2005.50008.x. PMid:16191117.

Redfearn DP, Simpson CS, Abdollah H, Baranchuk AM. Temporo-spatial stability of complex fractionated atrial electrograms in two distinct and separate episodes of paroxysmal atrial fibrillation. Europace. 2009; 11(11):1440-4. http://dx.doi.org/10.1093/europace/eup287. PMid:19880410.

Rodrigo M, Guillem MS, Climent AM, Pedrón-Torrecilla J, Liberos A, Millet J, Fernández-Avilés F, Atienza F, Berenfeld O. Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. Heart Rhythm. 2014; 11(9):1584-91. http://dx.doi.org/10.1016/j.hrthm.2014.05.013. PMid:24846374.

Rostock T, Rotter M, Sanders P, Takahashi Y, Jais P, Hocini M, Hsu LF, Sacher F, Clémenty J, Haïssaguerre M. High-density activation mapping of fractionated electrograms in the atria of patients with paroxysmal atrial fibrillation. Heart Rhythm. 2006; 3(1):27-34. http://dx.doi.org/10.1016/j.hrthm.2005.09.019. PMid:16399048.

Roux JF, Gojraty S, Bala R, Liu CF, Dixit S, Hutchinson MD, Garcia F, Lin D, Callans DJ, Riley M, Marchlinski F, Gerstenfeld EP. Effect of pulmonary vein isolation on the distribution of complex fractionated electrograms in humans. Heart Rhythm. 2009; 6(2):156-60. http://dx.doi.org/10.1016/j.hrthm.2008.10.046. PMid:19187903.

Roux JF, Gojraty S, Bala R, Liu CF, Hutchinson MD, Dixit S, Callans DJ, Marchlinski F, Gerstenfeld EP. Complex fractionated electrogram distribution and temporal stability in patients undergoing atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2008; 19(8):815-20. http://dx.doi.org/10.1111/j.1540-8167.2008.01133.x. PMid:18373601.

Salinet J, Schlindwein FS, Stafford P, Almeida TP, Li X, Vanheusden FJ, Guillem MS, Ng GA. Propagation of meandering rotors surrounded by areas of high dominant frequency in persistent atrial fibrillation. Heart Rhythm. 2017; 14(9):1269-78. http://dx.doi.org/10.1016/j.hrthm.2017.04.031. PMid:28438722.

Salinet JL, Tuan JH, Sandilands AJ, Stafford PJ, Schlindwein FS, Ng GA. Distinctive patterns of dominant frequency trajectory behavior in drug-refractory persistent atrial fibrillation: preliminary characterization of spatiotemporal instability. J Cardiovasc Electrophysiol. 2013; 25(4):371-9. http://dx.doi.org/10.1111/jce.12331. PMid:24806529.

Schilling C. Analysis of atrial electrograms [dissertation]. Karlsruhe: Karlsruhe Institute of Technology; 2012.

Schilling RJ, Peters NS, Davies W. Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter: comparison of contact and reconstructed electrograms during sinus rhythm. Circulation. 1998; 98(9):887-98. http://dx.doi.org/10.1161/01.CIR.98.9.887. PMid:9738644.

Schmitt C, Zrenner B, Schneider M, Karch M, Ndrepepa G, Deisenhofer I, Weyerbrock S, Schreieck J, Schömig A. Clinical experience with a novel multielectrode basket catheter in right atrial tachycardias. Circulation. 1999; 99(18):2414-22. http://dx.doi.org/10.1161/01.CIR.99.18.2414. PMid:10318663.

Soriano DC, Suyama R, Attux R. Blind extraction of chaotic sources from white gaussian noise based on a measure of determinism. Berlin: Springer; 2009. p. 122-9. http://dx.doi.org/10.1007/978-3-642-00599-2_16. 

Soriano DC, Suyama R, Attux R. Blind extraction of chaotic sources from mixtures with stochastic signals based on recurrence quantification analysis. Dig Sig Proc. 2011; 21(3):417-26. http://dx.doi.org/10.1016/j.dsp.2010.12.003.

Stevenson WG, Soejima K. Recording techniques for clinical electrophysiology. J Cardiovasc Electrophysiol. 2005; 16(9):1017-22. http://dx.doi.org/10.1111/j.1540-8167.2005.50155.x. PMid:16174026.

Stiles MK, Brooks AG, John B, Wilson L, Kuklik P, Dimitri H, Lau DH, Roberts-Thomson RL, Mackenzie L, Willoughby S, Young GD, Sanders P. The effect of electrogram duration on quantification of complex fractionated atrial electrograms and dominant frequency. J Cardiovasc Electrophysiol. 2008; 19(3):252-8. http://dx.doi.org/10.1111/j.1540-8167.2007.01034.x. PMid:18302697.

Tang M, Chang CQ, Fung PC, Chau KT, Chan FHY. An improved method for discriminating ECG signals using typical nonlinear dynamic parameters and recurrence quantification analysis in cardiac disease therapy. In: IEEE Engineering in Medicine and Biology 27th Annual Conference; 2006 Jan 17-18; Shanghai. USA: IEEE; 2006. p. 2459-62.

Tsai WC, Wang JH, Lin YJ, Tsao HM, Chang SL, Lo LW, Hu YF, Chang CJ, Tang WH, Huang SY, Suenari K, Tuan TC, Chen SA. Consistency of the automatic algorithm in detecting complex fractionated electrograms using an electroanatomical navigation system. Pacing Clin Electrophysiol. 2012; 35(8):980-9. http://dx.doi.org/10.1111/j.1540-8159.2012.03444.x. PMid:22816370.

Tuan J, Jeilan M, Kundu S, Nicolson W, Chung I, Stafford PJ, Ng GA. Regional fractionation and dominant frequency in persistent atrial fibrillation: effects of left atrial ablation and evidence of spatial relationship. Europace. 2011; 13(11):1550-6. http://dx.doi.org/10.1093/europace/eur174. PMid:21712282.

Verma A, Wulffhart Z, Beardsall M, Whaley B, Hill C, Khaykin Y. Spatial and temporal stability of complex fractionated electrograms in patients with persistent atrial fibrillation over longer time periods: relationship to local electrogram cycle length. Heart Rhythm. 2008; 5(8):1127-33. http://dx.doi.org/10.1016/j.hrthm.2008.04.027. PMid:18675223.

Webber CL Jr, Zbilut JP. Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol. 1994; 76(2):965-73. http://dx.doi.org/10.1152/jappl.1994.76.2.965. PMid:8175612.

Webber CL Jr, Zbilut JP. Recurrence quantifications: feature extractions from recurrence plots. Int J Bifurcat Chaos. 2007; 17(10):3467-75. http://dx.doi.org/10.1142/S0218127407019226.

Yang H. Multiscale recurrence quantification analysis of spatial cardiac vectorcardiogram signals. IEEE Trans Biomed Eng. 2011; 58(2):339-47. http://dx.doi.org/10.1109/TBME.2010.2063704. PMid:20693104.

Zaman JA, Narayan SM. Ablation of atrial fibrillation: How can less be more? Circ Arrhythm Electrophysiol. 2015; 8(6):1303-5. http://dx.doi.org/10.1161/CIRCEP.115.003495. PMid:26671931.

Zbilut JP, Thomasson N, Webber CL. Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med Eng Phys. 2002; 24(1):53-60. http://dx.doi.org/10.1016/S1350-4533(01)00112-6. PMid:11891140.

5c48e1af0e8825213a75a621 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections