Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.180035
Research on Biomedical Engineering
Original article

Robust pulmonary segmentation for chest radiography, combining enhancement, adaptive morphology and innovative active contours - Published Ahead of Print

Daniel Aparecido Vital, Barbara Teixeira Sais, Matheus Cardoso Moraes

Abstract

Introduction: Statistical data reveal that approximately 140 million radiological exams are performed annually in Brazil. These exams are designed to detect and to analyze fractures, caused by different types of trauma; as well as, to diagnose pathologies such as pulmonary diseases. For better visualization of those lesions or abnormalities, methods of image segmentation can be implemented. Such methods lead to the separation of the region of interest, which allows extracting the characteristics and anomalies of the desired tissue. However, the methods developed by researchers in this area still have restrictions. Consequently, we present an automatic pulmonary segmentation approach that overcomes these constraints. Methods: This method is composed of a combination of Discrete Wavelet Packet Frame (DWPF), morphological operations and Gradient Vector Flow (GVF). The methodology is divided into four steps: Pre-processing - the original image is enhanced by discrete wavelet; Processing - where occurs a combination of the Otsu threshold with a series of morphological operations in order to identify the pulmonary object; Post-processing - an innovative form of using GVF improves the binary information of pulmonary tissue,
and; Evaluation – the segmented images were evaluated for accuracy of detection the pulmonary region and border. Results: The evaluation was carried out by segmenting 247 digital X-ray challenging images of the thorax human. The results show high for values of Overlap (97,63% ± 3.34%), and Average Contour Distance (0.69mm ± 0.95mm). Conclusion: The results allow verifying that the proposed technique is robust and more accurate than other methods of lung segmentation, besides being a fully automatic method of lung segmentation.

Keywords

Lung segmentation, Chest radiographs, Discrete wavelet packet frame, Gradient vector flow, Binary morphology.

References

Armato SG 3rd, Giger ML, MacMahon H. Automated lung segmentation in digitized posteroanterior chest radiographs. Acad Radiol. 1998; 5(4):245-55. http://dx.doi.org/10.1016/S1076-6332(98)80223-7. PMid:9561257.

Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Zhiyun Xue, Karargyris A, Antani S, Thoma G, McDonald CJ. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging. 2014; 33(2):577-90. http://dx.doi.org/10.1109/TMI.2013.2290491. PMid:24239990.

Canny J. A computational approach to edge detection. USA: Readings Comp Vision, 1987. p. 184-203.

Cavalcante TS, Cortez PC, Almeida TM, Felix JHS, Holanda MA. Segmentação automática 2D de vias aéreas em imagens de tomografia computadorizada do tórax. Rev Bras Eng Bioméd. 2013; 29(4):389-403. http://dx.doi.org/10.4322/rbeb.2013.038.

Chaudhary C, Patil MK. Review of image enhancement techniques using histogram equalization. Int J Applic Innovation Eng Managem. 2013; 2(5):343-9.

Chen S, Suzuki K. Separation of bones from chest radiographs by means of anatomically specific multiple massive-training ANNs combined with total variation minimization smoothing. IEEE Trans Med Imaging. 2014; 33(2):246-57. http://dx.doi.org/10.1109/TMI.2013.2284016. PMid:24132005.

Coifman RR, Wickerhauser MV. Entropy-based algorithms for best basis selection. IEEE Trans Inf Theory. 1992; 38(2):713-8. http://dx.doi.org/10.1109/18.119732.

Costa CFF Fo, Levy PC, Xavier CDM, Fujimoto LBM, Costa MGF. Automatic identification of tuberculosis mycobacterium. Res Biomed Eng. 2015; 31(1):33-43. http://dx.doi.org/10.1590/2446-4740.0524.

Dai W, Doyle J, Liang X, Zhang H, Dong N, Li Y, Xing EP. SCAN: structure correcting adversarial network for chest x-rays organ segmentation. ArXiv. 2017:1-10.

Departamento de Informática do Sistema Único de Saúde – DATASUS. Informações de Saúde [Internet]. Brasília: Ministério da Saúde; 2015. [cited 2017 Feb 10]. Available from: http://tabnet.datasus.gov.br/tabnet/tabnet.htm

Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945; 26(3):297-302. http://dx.doi.org/10.2307/1932409.

Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010; 127(12):2893-917. http://dx.doi.org/10.1002/ijc.25516. PMid:21351269.

Ibragimov B, Likar B, Pernus F, Vrtovec T. A game-theoretic framework for landmark-based image segmentation. IEEE Trans Med Imaging. 2012; 31(9):1761-76. http://dx.doi.org/10.1109/TMI.2012.2202915. PMid:22692901.

Ikhsan IAM, Hussain A, Zulkifley MA, Tahir NM, Mustapha A. An analysis of x-ray image enhancement methods for vertebral bone segmentation. In: Proceedings of the IEEE 10th International Colloquium on Signal Processing and its Applications; 2014 Mar 7-9; Kuala Lumpur, Malaysia. USA: IEEE; 2014. p. 208-11. http://dx.doi.org/10.1109/CSPA.2014.6805749.

Katouzian A, Baseri B, Konofagou EE, Laine AF. Texture-driven coronary artery plaque characterization using wavelet packet signatures. In: Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2008 May 14-17; Paris, France. USA: IEEE; 2008. p. 197-200. http://dx.doi.org/10.1109/ISBI.2008.4540966.

Kumar SV, Deka MK, Bagga M, Kala MS, Gauthaman K. A systematic review of different type of tuberculosis. Eur Rev Med Pharmacol Sci. 2010; 14(10):831-43. PMid:21222369.

Kupinski MA, Giger ML. Automated seeded lesion segmentation on digital mammograms. IEEE Trans Med Imaging. 1998; 17(4):510-7. http://dx.doi.org/10.1109/42.730396. PMid:9845307.

Lorgelly PK, Atkinson M, Lakhanpaul M, Smyth AR, Vyas H, Weston V, Stephenson T. Oral versus iv antibiotics for community-acquired pneumonia in children: a cost-minimisation analysis. Eur Respir J. 2010; 35(4):858-64. http://dx.doi.org/10.1183/09031936.00087209. PMid:19717479.

McNitt-Gray MF, Huang HK, Sayre JW. Feature selection in the pattern classification problem of digital chest radiograph segmentation. IEEE Trans Med Imaging. 1995; 14(3):537-47. http://dx.doi.org/10.1109/42.414619. PMid:18215858.

Michel-González E, Cho MH, Lee SY. Geometric nonlinear diffusion filter and its application to X-ray imaging. Biomed Eng Online. 2011; 10(1):47. http://dx.doi.org/10.1186/1475-925X-10-47. PMid:21639933.

Moraes MC, Furuie SS. An approach to automatically segment the media-adventitia borders in IVUS. Rev Bras Eng Bioméd. 2010; 26(3):219-33. http://dx.doi.org/10.4322/rbeb.2012.089.

Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979; 9(1):62-6. http://dx.doi.org/10.1109/TSMC.1979.4310076.

Priya CL, Gowthami D, Poonguzhali S. Lung pattern classification for interstitial lung diseases using an ANN-back propagation network. In: Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP); 2017 Apr 6-8; Chennai, India. USA: IEEE; 2017. p. 1917-22. http://dx.doi.org/10.1109/ICCSP.2017.8286732.

Rebouças PP Fo, Cortez PC, Félix JHS, Cavalcante TS, Holanda MA. Modelo de Contorno Ativo Crisp Adaptativo 2D aplicado na segmentação dos pulmões em imagens de TC do tórax de voluntários sadios e pacientes com enfisema pulmonar. Rev Bras Eng Bioméd. 2013; 29(4):363-76. http://dx.doi.org/10.4322/rbeb.2013.041.

Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet. 2011; 377(9773):1264-75. http://dx.doi.org/10.1016/S0140-6736(10)61459-6. PMid:21435708.

Shao Y, Gao Y, Guo Y, Shi Y, Yang X, Shen D. Hierarchical lung field segmentation with joint shape and appearance sparse learning. IEEE Trans Med Imaging. 2014; 33(9):1761-80. http://dx.doi.org/10.1109/TMI.2014.2305691. PMid:25181734.

Shi Y, Qi F, Xue Z, Chen L, Ito K, Matsuo H, Shen D. Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Trans Med Imaging. 2008; 27(4):481-94. http://dx.doi.org/10.1109/TMI.2007.908130. PMid:18390345.

Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu KI, Matsui M, Fujita H, Kodera Y, Doi K. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. AJR Am J Roentgenol. 2000; 174(1):71-4. http://dx.doi.org/10.2214/ajr.174.1.1740071. PMid:10628457.

Sokashe MSV. Computer assisted method for cervical vertebrae segmentation from x-ray images. Computer. 2013; 2(11):4387-8.

Stegmann MB, Ersboll BK, Larsen R. FAME-a flexible appearance modeling environment. IEEE Trans Med Imaging. 2003; 22(10):1319-31. http://dx.doi.org/10.1109/TMI.2003.817780. PMid:14552585.

Udupa JK, Leblanc VR, Zhuge Y, Imielinska C, Schmidt H, Currie LM, Hirsch BE, Woodburn J. A framework for evaluating image segmentation algorithms. Comput Med Imaging Graph. 2006; 30(2):75-87. http://dx.doi.org/10.1016/j.compmedimag.2005.12.001. PMid:16584976.
Van Ginneken B, Stegmann MB, Loog M. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal. 2006; 10(1):19-40. http://dx.doi.org/10.1016/j.media.2005.02.002. PMid:15919232.
Vidaurrazaga M, Diago LA, Cruz A. Contrast enhancement with wavelet transform in radiological images. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2000 July 23-28; Chicago, IL. USA: IEEE; 2000. p. 1760-3. http://dx.doi.org/10.1109/IEMBS.2000.900425.

Wan Ahmad WSHM, W Zaki WMD, Ahmad Fauzi MF. Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter. Biomed Eng Online. 2015; 14(1):20. http://dx.doi.org/10.1186/s12938-015-0014-8. PMid:25889188.

Wu G, Zhang X, Luo S, Hu Q. Lung segmentation based on customized active shape model from digital radiography chest images. J Med Imaging Health Inf. 2015; 5(2):184-91. http://dx.doi.org/10.1166/jmihi.2015.1382.

Xiong J, Shao Y, Ma J, Ren Y, Wang Q, Zhao J. Lung field segmentation using weighted sparse shape composition with robust initialization. Med Phys. 2017; 44(11):5916-29. http://dx.doi.org/10.1002/mp.12561. PMid:28875551.

Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process. 1998; 7(3):359-69. http://dx.doi.org/10.1109/83.661186. PMid:18276256.

Zhu H, Sun W, Wu M, Guan G, Guan Y. Pre-processing of X-ray medical image based on improved temporal recursive self-adaptive filter. In: Proceedings of the 2008 The 9th International Conference for Young Computer Scientists; 2008 Nov 18-21; Hunan, China. USA: IEEE; 2008. p. 758-63. http://dx.doi.org/10.1109/ICYCS.2008.360.

5ba6ea690e88252c6a36c1f3 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections