Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.08916
Research on Biomedical Engineering
Original Article

Three-dimensional geometric model of the middle segment of the thoracic spine based on graphical images for finite element analysis

Aroeira, Rozilene Maria Cota; Pertence, Antônio Eustáquio de Melo; Kemmoku, Daniel Takanori; Greco, Marcelo

Downloads: 0
Views: 221

Abstract

Introduction: Biomedical studies involve complex anatomical structures, which require specific methodology to generate their geometric models. The middle segment of the thoracic spine (T5-T10) is the site of the highest incidence of vertebral deformity in adolescents. Traditionally, its geometries are derived from computed tomography or magnetic resonance imaging data. However, this approach may restrict certain studies. The study aimed to generate two 3D geometric model of the T5-T10 thoracic spine segment, obtained from graphical images, and to create mesh for finite element studies. Methods: A 3D geometric model of T5-T10 was generated using two anatomical images of T6 vertebra (side and top). The geometric model was created in Autodesk® Maya® 3D 2013, and the mesh process in HiperMesh and MeshMixer (v11.0.544 Autodesk). Results: The T5-T10 thoracic segment model is presented with its passive components, bones, intervertebral discs and flavum, intertransverse and supraspinous ligaments, in different views, as well as the volumetric mesh. Conclusion: The 3D geometric model generated from graphical images is suitable for application in non-patient-specific finite element model studies or, with restrictions, in the use of computed tomography or magnetic resonance imaging. This model may be useful for biomechanical studies related to the middle thoracic spine, the most vulnerable site for vertebral deformations.    

Keywords

Graphical modeling, Anatomic models, Thoracic spine, Finite element method.

References

Castelein RM, Dieën JH, Smit TH. The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis: a hypothesis. Medical Hypotheses. 2005; 65(3):501-8. PMid:15913901. http://dx.doi.org/10.1016/j.mehy.2005.03.025. 

Cheng FH, Shih SL, Chou WK, Livic L, Sung WH, Chen CS. Finite element analysis of the scoliosis spine under different loading conditions. Bio-Medical Materials and Engineering. 2010; 20(5):251-9. PMid:21084737. 

Dong L, Li G, Mao H, Marek S, Yang KH. Development and validation of a 10-year-old child ligamentous cervical spine finite element model. Annals of Biomedical Engineering. 2013; 41(12):2538-52. PMid:23817769. http://dx.doi.org/10.1007/s10439-013-0858-7. 

Dumas D, Lafage V, Lafon Y, Steib JP, Mitton D, Skalli W. Finite element simulation of spinal deformities correction by in situ contouring technique. Computer Methods in Biomechanics and Biomedical Engineering. 2005; 8(5):331-7. PMid:16298855. http://dx.doi.org/10.1080/10255840500309653. 

Dumas R, Blanchard B, Carlier R, Loubresse CG, Le Huec J-C, Marty C, Moinard M, Vital J-M. A semi-automated method using interpolation and optimisation for the 3D reconstruction of the spine from bi-planar radiography: a precision and accuracy study. Medical & Biological Engineering & Computing. 2008; 46(1):85-92. PMid:17874152. http://dx.doi.org/10.1007/s11517-007-0253-3. 

El Masri F, Sapin de Brosses E, Rhissassi K, Skalli W, Mitton D. Apparent young’s modulus of vertebral cortico-cancellous bone specimens. Computer Methods in Biomechanics and Biomedical Engineering. 2012; 15(1):23-8. PMid:21749276. http://dx.doi.org/10.1080/10255842.2011.565751. 

Fish J, Belytschko T. Um primeiro curso em elementos finitos. Rio de Janeiro: LTC; 2009. 

Fok J, Adeeb S, Carey J. FEM simulation of non-progressive growth from asymmetric loading and vicious cycle theory: scoliosis study proof of concept. The Open Biomedical Engineering Journal. 2010; 4(1):162-9. PMid:21379393. http://dx.doi.org/10.2174/1874120701004010162. 

Ghista DN, Viviani GR, Subbaraj K, Lozada PJ, Srinivasan TM, Barnes G. Biomechanical basis of optimal scoliosis surgical-correction. Journal of Biomechanics. 1988; 21(2):77-88. PMid:3350831. http://dx.doi.org/10.1016/0021-9290(88)90001-2. 

Hermenegildo JA, Roberts SL, Kim SY. Innervation pattern of the suprascapular nerve within supraspinatus: a three-dimensional computer modeling study. Clinical Anatomy (New York, N.Y.). 2014; 27(4):622-30. PMid:23649406. http://dx.doi.org/10.1002/ca.22250. 

Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Medical Engineering & Physics. 2009; 31(6):681-7. PMid:19230743. http://dx.doi.org/10.1016/j.medengphy.2009.01.003. 

Kakol W, Lodygowski T, Ogurkowska MB, Wierszycki M. Are we able support medical diagnosis or rehabilitation of human vertebra by numerical simulation? In: Proceedings of the 15th International Conference on Computer Methods in Mechanics; 2003 June 3-6; Gliwice, Poland. 2003. 

Kouwenhoven JWM, Smit TH, Van Der Veen AJ, Kingma I, Van Dieen JH, Castelein RM. Effects of dorsal versus ventral shear loads on the rotational stability of the thoracic spine. Spine. 2007; 32(23):2545-50. PMid:17978652. http://dx.doi.org/10.1097/BRS.0b013e318158cd86. 

Kumar S, Nayak KP, Hareesha KS. Improving visibility of stereo-radiographic spine reconstruction with geometric inferences. Journal of Digital Imaging. 2016; 29(2):226-34. PMid:26537930. http://dx.doi.org/10.1007/s10278-015-9841-1. 

Lan CC, Kuo CS, Chen CH, Hu HT. Finite element analysis of biomechanical behavior of whole Thoraco-lumbar spine with ligamentous effect. Changhua J Med. 2013; 11:26-41. 

Li H, Leow WK, Huang CH, Howe TS. Modeling and measurement of 3D deformation of scoliotic spine 2D X-ray images. Comput Anal Images Patterns. 2009; 57(2):647-54. http://dx.doi.org/10.1007/978-3-642-03767-2_79. 

Lodygwski T, Kakol W, Wierszycki M. Three-dimensional nonlinear finite element model of lumbar intervertebral disc. Acta of Bioengineering and Biomechanics. 2005; 7:17-28. 

Meijer GJM, Homminga J, Hekman EE, Veldhuizen AG, Verkerke GJ. The effect of three-dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment. Journal of Biomechanics. 2010; 43(8):1590-7. PMid:20206933. http://dx.doi.org/10.1016/j.jbiomech.2010.01.028. 

Meijer GJM. Development of a non-fusion scoliosis correction device numerical modelling of scoliosis correction [thesis]. Enschede: Universiteit Twente; 2011. 

Netter FH. Atlas of human anatomy. 2nd ed. East Hanover: Novartis; 1997. 

Novosad J, Cheriet F, Petit Y, Labelle H. Three-dimensional 3-D reconstruction of the spine from a single X-ray image and prior vertebra models. IEEE Transactions on Bio-Medical Engineering. 2004; 51(9):1628-39. PMid:15376511. http://dx.doi.org/10.1109/TBME.2004.827537. 

Panagiotopoulou O. Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology. Annals of Human Biology. 2009; 36(5):609-23. PMid:19657767. http://dx.doi.org/10.1080/03014460903019879. 

Panjabi MM, Brand RA Jr, White AA 3rd. Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg. 1976; 58-A(5):642-52. PMid:932062. http://dx.doi.org/10.2106/00004623-197658050-00011. 

Panjabi MM, Takata K, Goel V, Federico D, Oxland T, Duranceau J, Krag M. Thoracic human vertebrae: quantitative three-dimensional anatomy. Spine. 1991; 16(8):888-901. PMid:1948374. http://dx.doi.org/10.1097/00007632-199108000-00006. 

Rajasekaran S, Natarajan RN, Babu JN, Kanna PR, Shetty AP, Andersson GB. Lumbar vertebral growth is governed by “chondral growth force response curve” rather than “Hueter-Volkmann Law”. Spine. 2011; 36(22):E1435-45. PMid:21343857. http://dx.doi.org/10.1097/BRS.0b013e3182041e3c. 

Riddell D. MAYA para Windows e Macintoch. Maya 5 for Windows and Macintosh. São Paulo: Pearson Makron Books; 2004. 

Rosatelli AL, Ravichandiran K, Agur AM. Three-dimensional study of the musculotendinous architecture of lumbar multifidus and its functional implications. Clinical Anatomy (New York, N.Y.). 2008; 21(6):539-46. PMid:18627104. http://dx.doi.org/10.1002/ca.20659. 

Teo EC, Ng HW. Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method. Medical Engineering & Physics. 2001; 23(3):155-64. PMid:11410380. http://dx.doi.org/10.1016/S1350-4533(01)00036-4. 

Travert C, Jolivet E, Sapin-de Brosses E, Mitton D, Skalli W. Sensitivity of patient-specific vertebral finite element model from low dose imaging to material properties and loading conditions. Medical & Biological Engineering & Computing. 2011; 49(12):1355-61. PMid:21927822. http://dx.doi.org/10.1007/s11517-011-0825-0. 

Tyndyk MA, Barron V, McHugh PE, O’Mahoney D. Generation of a finite element model of the thoracolumbar spine. Acta of Bioengineering and Biomechanics. 2007; 9(1):35-46. PMid:17933103. 

Van Der Plaats A, Veldhuizen AG, Verkerke GJ. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Annals of Biomedical Engineering. 2007; 35(7):1206-15. PMid:17415662. http://dx.doi.org/10.1007/s10439-007-9256-3. 

Wang W, Baran GR, Betz RR, Samdani AF, Pahys JM, Cahill PJ. The use of finite element models to assist understanding and treatment for scoliosis: a review paper. Spine Deformity. 2014; 2(1):10-27. PMid:27927438. http://dx.doi.org/10.1016/j.jspd.2013.09.007. 

Wierszycki M, Kakol W, Lodygowski T. Numerical complexity of selected biomechanical problems. Journal of Theoretical and Applied Mechanics. 2006; 44(4):797-818. 

Xia T, Qiu Chon E, Teo WC. Finite element on kinematics of the thoracic T10-T11 motion segment: assessment of the locus of instantaneous axes of rotation in the sagittal plane. Med Phys Biomed Eng. 2003; 24:99.

59e9f4810e882537779aaad9 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections