Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.0777
Research on Biomedical Engineering
Original Article

Detection of movement intention using EEG in a human-robot interaction environment

Lana, Ernesto Pablo; Adorno, Bruno Vilhena; Tierra-Criollo, Carlos Julio

Downloads: 0
Views: 940

Abstract

Introduction: This paper presents a detection method for upper limb movement intention as part of a brain-machine interface using EEG signals, whose final goal is to assist disabled or vulnerable people with activities of daily living. Methods: EEG signals were recorded from six naïve healthy volunteers while performing a motor task. Every volunteer remained in an acoustically isolated recording room. The robot was placed in front of the volunteers such that it seemed to be a mirror of their right arm, emulating a Brain Machine Interface environment. The volunteers were seated in an armchair throughout the experiment, outside the reaching area of the robot to guarantee safety. Three conditions are studied: observation, execution, and imagery of right arm’s flexion and extension movements paced by an anthropomorphic manipulator robot. The detector of movement intention uses the spectral F test for discrimination of conditions and uses as feature the desynchronization patterns found on the volunteers. Using a detector provides an objective method to acknowledge for the occurrence of movement intention. Results: When using four realizations of the task, detection rates ranging from 53 to 97% were found in five of the volunteers when the movement was executed, in three of them when the movement was imagined, and in two of them when the movement was observed. Conclusions: Detection rates for movement observation raises the question of how the visual feedback may affect the performance of a working brain-machine interface, posing another challenge for the upcoming interface implementation. Future developments will focus on the improvement of feature extraction and detection accuracy for movement intention using EEG data.

Keywords

Movement intention, Objective response detection, Statistical F test, Event-related desynchronization, Brain-machine interface.

References

Allison BZ, Brunner C, Altstätter C, Wagner IC, Grissmann S, Neuper C. A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control. Journal of Neuroscience Methods. 2012; 209(2):299-307. http://dx.doi.org/10.1016/j.jneumeth.2012.06.022. PMid:22771715.

Bai O, Lin P, Vorbach S, Li J, Furlani S, Hallett M. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG. Clinical Neurophysiology. 2007; 118(12):2637-55. http://dx.doi.org/10.1016/j.clinph.2007.08.025. PMid:17967559.

Bai O, Rathi V, Lin P, Huang D, Battapady H, Fei D-Y, Schneider L, Houdayer E, Chen X, Hallett M. Prediction of human voluntary movement before it occurs. Clinical Neurophysiology. 2011; 122(2):364-72. http://dx.doi.org/10.1016/j.clinph.2010.07.010. PMid:20675187.

Behrmann M, Geng JJ, Shomstein S. Parietal cortex and attention. Current Opinion in Neurobiology. 2004; 14(2):212-7. http://dx.doi.org/10.1016/j.conb.2004.03.012. PMid:15082327.

Bhagat NA. Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2014 Aug 26-30; Chicago, USA. Chigago: IEEE; 2014. p. 4127-30. http://dx.doi.org/10.1109/EMBC.2014.6944532.

Cecotti H. Spelling with non-invasive brain-computer interfaces: current and future trends. The Journal of Physiology. 2011; 105(1-3):106-14. PMid:21911058.

Doud AJ, Lucas JP, Pisansky MT, He B. Continuous three dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS One. 2011; 6(10):e26322. http://dx.doi.org/10.1371/journal.pone.0026322. PMid:22046274.

Fatourechi M, Bashashati A, Ward RK, Birch GE. EMG and EOG artifacts in brain computer interface systems: a survey. Clinical Neurophysiology. 2007; 118(3):480-94. http://dx.doi.org/10.1016/j.clinph.2006.10.019. PMid:17169606.

Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Müller KR, Blankertz B. Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage. 2012; 59(1):519-29. http://dx.doi.org/10.1016/j.neuroimage.2011.07.084. PMid:21840399.

Giuliana G, Mario M, Yassin J. A quality parameter for the detection of the intentionality of movement in patients with neurological tremor performing a finger-to-nose test. In: 33rd Annual International Conference of the IEEE EMBS; 2011 Aug 30-Sept 03; Boston, USA. Boston: IEEE; 2011. p. 7707-10. http://dx.doi.org/10.1109/IEMBS.2011.6091899.

Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485(7398):372-5. http://dx.doi.org/10.1038/nature11076. PMid:22596161.

Infantosi AF, Sá AM. A statistical test for evaluating the event-related synchronization/desynchronization and its potential use in brain-computer-interfaces. IFMBE Proceedings. 2007; 18:1122-6. http://dx.doi.org/10.1007/978-3-540-74471-9_260.

Jeon Y, Nam CS, Kim YJ, Whang MC. Event-related (De)synchronization (ERD/ERS) during motor imagery tasks: implications for brain-computer interfaces. International Journal of Industrial Ergonomics. 2011; 41(5):428-36. http://dx.doi.org/10.1016/j.ergon.2011.03.005.

Jiang N, Gizzi L, Mrachacz-Kersting N, Dremstrup K, Farina D. A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clinical Neurophysiology. 2015; 126(1):154-9. http://dx.doi.org/10.1016/j.clinph.2014.05.003. PMid:24910150.

Kalcher J, Pfurtscheller G. Discrimination between phaselocked and non-phase-locked event-related EEG activity. Electroencephalography and Clinical Neurophysiology. 1995; 94(5):381-4. http://dx.doi.org/10.1016/0013-4694(95)00040-6. PMid:7774524.

Kamavuako EN, Jochumsen M, Niazi IK, Dremstrup K. Comparison of features for movement prediction from single-trial movement-related cortical potentials in healthy subjects and stroke patients. Computational Intelligence and Neuroscience. 2015; 2015:1-8. http://dx.doi.org/10.1155/2015/858015. PMid:26161089.

Kotchoubey B. Event-related potentials, cognition, and behavior: a biological approach. Neuroscience and Biobehavioral Reviews. 2006; 30(1):42-65. http://dx.doi.org/10.1016/j.neubiorev.2005.04.002. PMid:16033699.

Lana EP, Adorno BV, Tierra-Criollo CJ. An ERD/ERS analysis of the relation between human arm and robot manipulator movements. In: IEEE/ISSNIP Biosignals and Biorobotics Conference; 2013 Feb 18-20; Rio de Janeiro, Brazil. Rio de Janeiro: IEEE; 2013a. p. 1-7. http://dx.doi.org/10.1109/BRC.2013.6487461.

Lana EP, Adorno BV, Tierra-Criollo CJ. Assistance task using a manipulator robot and user kinematics feedback. In: 11 Simpósio Brasileiro de Automação Inteligente; 2013 Oct 13-17; Fortaleza, Brazil. Fortaleza: Universidade Federal do Ceará; 2013b. p. 1-6.

Lebedev MA, Nicolelis MAL. Brain-machine interfaces: past, present and future. Trends in Neurosciences. 2006; 29(9):536-46. http://dx.doi.org/10.1016/j.tins.2006.07.004. PMid:16859758.

Lew EYL, Chavarriaga R, Silvoni S, Millán JR. Detection of self-paced reaching movement intention from EEG signals. Frontiers in neuroengineering. 2012; 5:1-17. PMid:23055968.

Lew EYL, Chavarriaga R, Silvoni S, Millán JR. Single trial prediction of self-paced reaching directions from EEG signals. Frontiers in Neuroscience. 2014; 8:1-13. http://dx.doi.org/10.3389/fnins.2014.00222. PMid:25136290.

Li J, Wang Y, Zhang L, Jung TP. Combining ERPs and EEG spectral features for decoding intended movement direction. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2012 Aug 28-Sep 01; San Diego, USA. San Diego: IEEE; 2012. p. 1769-72.

Morash V, Bai O, Furlani S, Lin P, Hallett M. Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clinical Neurophysiology. 2008; 119(11):2570-8. http://dx.doi.org/10.1016/j.clinph.2008.08.013. PMid:18845473.

Nair DG, Purcott KL, Fuchs A, Steinberg F, Kelso JAS. Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study. Brain Research. Cognitive Brain Research. 2003; 15(3):250-60. http://dx.doi.org/10.1016/S0926-6410(02)00197-0. PMid:12527099.

Niazi IK, Jiang N, Tiberghien O, Nielsen JF, Dremstrup K, Farina D. Detection of movement intention from single-trial movement-related cortical potentials. Journal of Neural Engineering. 2011; 8(6):1-10. http://dx.doi.org/10.1088/1741-2560/8/6/066009. PMid:22027549.

Nicolelis MAL, Ribeiro S. Seeking the neural code. Scientific American. 2006; 295(6):70-7. http://dx.doi.org/10.1038/scientificamerican1206-70. PMid:17144353.

Nicolelis MAL. Brain-machine interfaces to restore motor function and probe neural circuits. Nature Reviews. Neuroscience. 2003; 4(5):417-22. http://dx.doi.org/10.1038/nrn1105. PMid:12728268.

Nikulin VV, Hohlefeld FU, Jacobs AM, Curio G. Quasi-movements: a novel motor-cognitive phenomenon. Neuropsychologia. 2008; 46(2):727-42. http://dx.doi.org/10.1016/j.neuropsychologia.2007.10.008. PMid:18035381.

Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, Scherer R, Zander TO, Mueller-Putz G, Neuper C, Birbaumer N. The hybrid BCI. Frontiers in Neuroscience. 2010; 4:1-11. PMid:20582271.

Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R. ‘Thought’ - Control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience Letters. 2003; 351(1):33-6. http://dx.doi.org/10.1016/S0304-3940(03)00947-9. PMid:14550907.

Pfurtscheller G, Neuper C, Schlögl A, Lugger K. Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Transactions on Rehabilitation Engineering. 1998; 6(3):316-25. http://dx.doi.org/10.1109/86.712230. PMid:9749909.

Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proceedings of the IEEE. 2001; 89(7):1123-34. http://dx.doi.org/10.1109/5.939829.

Pfurtscheller G, Silva FHL. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology. 1999; 110(11):1842-57. http://dx.doi.org/10.1016/S1388-2457(99)00141-8. PMid:10576479.

Pineda JA, Allison BZ, Vankov A. The effects of self-movement, observation, and imagination on alpha rhythms and readiness potentials (RP’s): toward a brain-computer interface (BCI). IEEE Transactions on Rehabilitation Engineering. 2000; 8(2):219-22. http://dx.doi.org/10.1109/86.847822. PMid:10896193.

Santos S Fo, Tierra-Criollo CJ, Souza AP, Pinto MAS, Lima MLC, Manzano GM. Magnitude squared of coherence to detect imaginary movement. EURASIP Journal on Advances in Signal Processing. 2009; 2009(1):534536. http://dx.doi.org/10.1155/2009/534536.

Santos-Couto-Paz CC, Teixeira-Salmela LF, Tierra-Criollo CJ. The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke. Brazilian Journal of Physical Therapy. 2013; 17(6):564-71. http://dx.doi.org/10.1590/S1413-35552012005000123. PMid:24271094.

Silva AST, Sá AMFLM, Tierra-Criollo CJ. Functional connectivity during elbow movements: comparison between motor and non-motor task. In: Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering; 2014 Sept 7-11; Dubrovnik, Croatia. Heidelberg: Springer; 2015. p. 938-41. http://dx.doi.org/10.1007/978-3-319-11128-5_233.

Simpson DM, Tierra-Criollo CJ, Leite RT, Zayen EJ, Infantosi AF. Objective response detection in an electroencephalogram during somatosensory stimulation. Annals of Biomedical Engineering. 2000; 28(6):691-8. http://dx.doi.org/10.1114/1.1305530. PMid:10983714.

Sirvent Blasco J, Iáñez E, Úbeda A, Azorín J. Visual evoked potential-based brain-machine interface applications to assist disabled people. Expert Systems with Applications. 2012; 39(9):7908-18. http://dx.doi.org/10.1016/j.eswa.2012.01.110.

Tehovnik EJ, Woods LC, Slocum WM. Transfer of information by BMI. Neuroscience. 2013; 255:134-46. http://dx.doi.org/10.1016/j.neuroscience.2013.10.003. PMid:24120558.

Tierra-Criollo CJ. Monitorização objetiva da resposta à estimulação somato-sensitiva utilizando parâmetros espectrais [thesis]. Rio de Janeiro: Universidade Federal do Rio de Janeiro; 2001.

Yuan H, Perdoni C, He B. Relationship between movement speed and EEG activity during imagined and executed hand movements. Journal of Neural Engineering. 2010; 7(2):26001. http://dx.doi.org/10.1088/1741-2560/7/2/026001. PMid:20168002.
5889fbf75d01231a018b488f rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections