Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.07716
Research on Biomedical Engineering
Review Article

Power amplifier circuits for functional electrical stimulation systems

Souza, Delmar Carvalho de; Gaiotto, Marcelo do Carmo; Nogueira Neto, Guilherme Nunes; Castro, Maria Claudia Ferrari de; Nohama, Percy

Downloads: 3
Views: 1009

Abstract

Introduction: Functional electrical stimulation (FES) is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI). One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients. Methods: A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator) and (circuit or design))” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles. Discussion: The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical hazards and discomfort to the individual submitted to FES application.    

Keywords

Functional electrical stimulator, SCI, Output stage, Power stage, Artificial gait rehabilitation.    

References

Badran M, Moussa M. BioMEMS implants for neural regeneration after a spinal cord injury. In: Proceedings of the 2005 International Conference on MEMS, NANO and Smart Systems (ICMENS’05); 2005; Alberta, Canadá. USA: IEEE; 2005. p. 89-90. http://dx.doi.org/10.1109/ICMENS.2005.31. 

Bélanger M, Stein RB, Wheeler GD, Gordon T, Leduc B. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Archives of Physical Medicine and Rehabilitation. 2000; 81(8):1090-8. PMid:10943761. http://dx.doi.org/10.1053/apmr.2000.7170. 

Brunetti F, Garay Á, Moreno JC, Pons JL. Enhancing functional electrical stimulation for emerging rehabilitation robotics in the framework of hyper project. In: Proceedings of the IEEE International Conference on Rehabilitation Robotics; 2011; Zurich. USA: IEEE; 2011. p. 1-6. http://dx.doi.org/10.1109/ICORR.2011.5975370. 

Chen M, Wu B, Lou X, Zhao T, Li J, Xu Z, Hu X, Zheng X. A self-adaptive foot-drop corrector using functional electrical stimulation (FES) modulated by tibialis anterior electromyography (EMG) dataset. Medical Engineering & Physics. 2013; 35(2):195-204. PMid:22621781. http://dx.doi.org/10.1016/j.medengphy.2012.04.016. 

Cheng KWE, Lu Y, Tong KY, Rad AB, Chow DHK, Sutanto D. Development of a circuit for functional electrical stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2004; 12(1):43-7. PMid:15068186. http://dx.doi.org/10.1109/TNSRE.2003.819936. 

Distefano JJ 3rd, Stubberud AR, Williams IJ. Schaum’s outline of feedback and control systems. 2nd ed. New York: McGraw-Hill; 2012. 

Gaiotto MCC, Nogueira-Neto GN, Krueger E, Magnani CEF, Nohama P. Uma contribuição ao projeto de saída de estimuladores elétricos neuromusculares bifásicos. In: Anais do XXIII Congresso Brasileiro de Engenharia Biomédica; 2012; Porto de Galinhas, PE, Brazil. Recife: Adaltech; 2012. p. 670-4. 

Hsueh YH, Chen GR. Design of high voltage digital-toanalog converter for electrical stimulator. In: Proceedings of the IEEE Asia Pacific Conference Circuits and Systems; 2012; Kaohsiung. USA: IEEE; 2012. p. 77-80. http://dx.doi.org/10.1109/APCCAS.2012.6418975. 

Huerta SC, Tarulli M, Prodic A, Popovic MR, Lehn PW. A universal functional electrical stimulator based on merged flyback-SC circuit. In: Proceedings of the 15th International Power Electronics and Motion Control Conference; 2012; Novi Sad, Serbia. USA: IEEE; 2012; p. LS5a.3-1-LS5a.3-5. http://dx.doi.org/10.1109/EPEPEMC.2012.6397471. 

Khosravani S, Lahimgarzadeh N, Maleki A. Developing a stimulator and an interface for FES-cycling rehabilitation system. In: Proceedings of the 18th Iranian Conference of Biomedical Engineering; 2011; Tehran. USA: IEEE; 2011. p. 175-80. http://dx.doi.org/10.1109/ICBME.2011.6168550. 

Laguna ZV, Cardiel E, Garay LI, Hernández PR. Electrical stimulator for surface nerve stimulation by using modulated pulses. In: Proceedings of the Pan American Health Care Exchanges; 2011; Rio de Janeiro. USA: IEEE; 2011. p. 77-82. http://dx.doi.org/10.1109/PAHCE.2011.5871852. 

Lima JA, Cordeiro AS. A low-cost neurostimulator with accurate pulsed-current control. IEEE Transactions on Biomedical Engineering. 2002; 49(5):497-500. PMid:12002182. http://dx.doi.org/10.1109/10.995689. 

Masdar A, Ibrahim BSKK, Jamil MMA, Hanafi D, Ahmad MKI, Rahman KAA. Development of wireless-based lowcost current controlled stimulator for patients with spinal cord injuries. In: Proceedings of the IEEE EMBS International Conference on Biomedical Engineering and Sciences; 2012; Langkawi. USA: IEEE; 2012. p. 493-8. http://dx.doi.org/10.1109/IECBES.2012.6498175. 

Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. Journal of Neuroscience Methods. 2005; 141(2):171-98. PMid:15661300. http://dx.doi.org/10.1016/j.jneumeth.2004.10.020. 

Moreno-Aranda J, Seireg A. Electrical parameters for overthe-skin muscle stimulation. Journal of Biomechanics. 1981; 14(9):579-85. PMid:6174526. http://dx.doi.org/10.1016/0021-9290(81)90083-X. 

Mottaghi S, Hofmann UG. Dynamically adjusted, scalable electrical stimulator for excitable tissue. In: Proceedings of the 7th Annual International IEEE EMBS Conference on Neural Engineering; 2015; Montpellier. USA: IEEE; 2015. p. 22-4. http://dx.doi.org/10.1109/NER.2015.7146616. 

Ogata K. Modern control engineering. 3rd ed. New Jersey: Prentice Hall; 1997. 

Qu H, Wang T, Hao M, Shi P, Zhang W, Wang G, Lan N. Development of a network FES system for stroke rehabilitation. In: Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011; Boston. USA: IEEE; 2011. p. 3119-22. http://dx.doi.org/10.1109/IEMBS.2011.6090851. 

Velloso JB, Souza MN. A programmable system of functional electrical stimulation (FES). In: Proceedings of the 29th Annual International Conference of the IEEE EMBS; 2007; Lyon. USA: IEEE; 2007. p. 23-6. http://dx.doi.org/10.1109/IEMBS.2007.4352769. 

Webster JG. Electronic devices for rehabilitation. John Wiley & Sons; 1989. 

Willand MP, De Bruin H. Design and testing of an instrumentation system to reduce stimulus pulse amplitude requirements during FES. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2008; Vancouver. USA: IEEE; 2008. p. 2764-7. http://dx.doi.org/10.1109/IEMBS.2008.4649775. 

Wu HC, Young ST, Kuo TS. A versatile multichannel directsynthesized electrical stimulator for FES applications. IEEE Transactions on Instrumentation and Measurement. 2002; 51(1):2-9. http://dx.doi.org/10.1109/19.989882. 

Xu Q, Huang T, He J, Wang Y, Zhou H. A programmable multi-channel stimulator for array electrodes in transcutaneous electrical stimulation. In: Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering; 2011; Harbin Heilongjiang. USA: IEEE; 2011. p. 652-6. http://dx.doi.org/10.1109/ICCME.2011.5876821. 

Yochum M, Binczak S, Bakir T, Jacquir S, Lepers R. A mixed FES/EMG system for real time analysis of muscular fatigue. In: Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2010; Buenos Aires. USA: IEEE; 2010. p. 4882-5. http://dx.doi.org/10.1109/IEMBS.2010.5627264. 

Zonghao H, Zhigong W, Xiaoying L, Wenyuan L, Xiaoyan S, Xintai Z, Shushan X, Haixian P, Cunliang Z. Design and experiment of a neural signal detection using a FES driving system. In: Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2010; Buenos Aires. USA: IEEE; 2010. p. 1523-6. http://dx.doi.org/10.1109/IEMBS.2010.5626834.

59e9fa470e882541779aaada rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections