Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.0759
Research on Biomedical Engineering
Original Article

A robust fully automatic lumen segmentation method for in vivo intracoronary optical coherence tomography

Macedo, Maysa Malfiza Garcia de; Takimura, Celso Kiyoshi; Lemos, Pedro Alves; Gutierrez, Marco Antonio

Downloads: 0
Views: 781

Abstract

Introduction: Intravascular optical coherence tomography (IVOCT) is an in-vivo imaging modality based on the introduction of a catheter in a blood vessel for viewing its inner wall using electromagnetic radiation. One of the most developed automatic applications for this modality is the lumen area segmentation, however on the evaluation of these methods, the slices inside bifurcation regions, or with the presence of complex atherosclerotic plaques and dissections are usually discarded. This paper describes a fully-automatic method for computing the lumen area in IVOCT images where the set of slices includes complex atherosclerotic plaques and dissections. Methods: The proposed lumen segmentation method is divided into two steps: preprocessing, including the removal of artifacts and the second step comprises a lumen detection using morphological operations. In addition, it is proposed an approach to delimit the lumen area for slices inside bifurcation region, considering only the main branch. Results: Evaluation of the automatic lumen segmentation used manual segmentations as a reference, it was performed on 1328 human IVOCT images, presenting a mean difference in lumen area and Dice metrics of 0.19 mm2 and 97% for slices outside the bifurcation, 1.2 mm2 and 88% in the regions with bifurcation without automatic contour correction and 0.52 mm2 and 90% inside bifurcation region with automatic contour correction. Conclusion: This present study shows a robust lumen segmentation method for vessel cross-sections with dissections and complex plaque and bifurcation avoiding the exclusion of such regions from the dataset analysis.

Keywords

Optical coherence tomography, Intravascular, Computer vision, Lumen segmentation, Complex plaque, Atherosclerosis.

References

Borgefors G. Distance transformations in digital images. Computer Vision Graphics and Image Processing. 1986; 1(344):344-71. http://dx.doi.org/10.1016/S0734-189X(86)80047-0.

Diletti R, Garcia-Garcia HM, Gomez-Lara J, Brugaletta S, Wykrzykowska JJ, van Ditzhuijzen N, van Geuns RJ, Regar E, Ambrosio G, Serruys PW. Assessment of coronary atherosclerosis progression and regression at bifurcations using combined IVUS and OCT. JACC: Cardiovascular Imaging. 2011; 4(7):774-80. http://dx.doi.org/10.1016/j.jcmg.2011.04.007. PMid:21757169.

Finn AV, Chandrashekhar Y, Narula J. IVUS and OCT: either or survivor. JACC: Cardiovascular Imaging. 2011; 4(9):1047-9.

Gonzalo N, Garcia-Garcia HM, Regar E, Barlis P, Wentzel J, Onuma Y, Ligthart J, Serruys PW. In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC: Cardiovascular Imaging. 2009; 2(4):473-82. http://dx.doi.org/10.1016/j.jcmg.2008.11.016. PMid:19580731.

ImageJ. Image processing and analysis in Java [internet]. [cited 2015 Apr 15]. Available from: http://imagej.nih.gov/ij/.

Ingebrigtsen T, Morgan MK, Faulder K, Ingebrigtsen L, Sparr T, Schirmer H. Bifurcation geometry and the presence of cerebral artery aneurysms. Journal of Neurosurgery. 2004; 101(1):108-13. http://dx.doi.org/10.3171/jns.2004.101.1.0108. PMid:15255260.

Kronzon I, Tunick P. Aortic atherosclerotic disease and stroke. Circulation. 2006; 114(1):63-75. http://dx.doi.org/10.1161/CIRCULATIONAHA.105.593418. PMid:16818829.

Macedo MMG, Takimura CK, Lemos PA, Gutierrez MA. An automatic labeling bifurcation method for intracoronary optical coherence tomography images. In: Proceedings of SPIE 9417 Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging; 25 Fev 21-28; Orlando, EUA. Orlando: SPIE; 2015a. p. 94170S.

Macedo MMG, Guimarães WVN, Galon MZ, Takimura CK, Lemos PA, Gutierrez MA. A bifurcation identifier for IV-OCT using orthogonal least squares and supervised machine learning. Computerized Medical Imaging and Graphics. 2015b; 46(2):237-48. http://dx.doi.org/10.1016/j.compmedimag.2015.09.004. PMid:26433615.

Moraes MC, Cardenas DAC, Furuie SS. Automatic lumen segmentation in IVOCT images using binary morphological reconstruction. Biomedical Engineering Online. 2013; 12(1):78. http://dx.doi.org/10.1186/1475-925X-12-78. PMid:23937790.

Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics. 1979; 9(1):62-6. http://dx.doi.org/10.1109/TSMC.1979.4310076.

Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang I-K, Akasaka T, Costa M, Guagliumi G, Grube E, Ozaki Y, Pinto F, Serruys PWJ. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. European Heart Journal. 2010; 31(4):401-15. http://dx.doi.org/10.1093/eurheartj/ehp433. PMid:19892716.

Sihan K, Botha C, Post F, de Winter S, Gonzalo N, Regar E, Serruys PJWC, Hamers R, Bruining N. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography: method and validation. Catheterization and Cardiovascular Interventions : Official Journal of the Society for Cardiac Angiography & Interventions. 2009; 74(7):1058-65. http://dx.doi.org/10.1002/ccd.22125. PMid:19521990.

Sihan K, Botha C, Post F, de Winter S, Regar E, Hamers R, Bruining N. A novel approach to quantitative analysis of intravascular optical coherence tomography imaging. In: 35th Annual Computers in Cardiology Conference; 2008 Sept 14-17; Bologna, Italia. Bologna: IEEE; 2008. p. 1089-92.

Sobel I. An isotropic 3x3 image gradient operator. Machine Vision for Three-Dimensional Scenes. 1990: 376-9.

Suter MJ, Tearney GJ, Bouma BE. Progress in intracoronary optical coherence tomography. IEEE Journal of Selected Topics in Quantum Electronics. 2010; 16(4):706-14. http://dx.doi.org/10.1109/JSTQE.2009.2035333.

Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: 6th International Conference on Computer Vision; 1988 Jan 7-7; Bombay, India. Piscataway: IEEE; 1998. p. 1-8.

Tsantis S, Kagadis GC, Katsanos K, Karnabatidis D, Bourantas G, Nikiforidis GC. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography. Medical Physics. 2012; 39(1):503-13. http://dx.doi.org/10.1118/1.3673067. PMid:22225321.

Tung K, Bei W, Shi W. Multi-atlas based neointima segmentation in intravascular coronary OCT. In: ISBI 2013: Proceedings of 10th International Symposium on Biomedical Imaging: from nano to macro. Piscataway: IEEE; 2013. p. 1280-3.

Tung K, Shi W, De Silva R, Edwards E, Rueckert D. Automatic vessel wall detection in intravascular coronary OCT. In: ISBI 2011: Proceedings of International Symposium on Biomedical Imaging. Piscataway: IEEE; 2011. p. 610-3.

Ughi G, Verjans J, Fard A, Wang H, Osborn E, Hara T, Mauskapf A, Jaffer FA, Tearney GJ. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging. The International Journal of Cardiovascular Imaging. 2015; 31(2):259-68. http://dx.doi.org/10.1007/s10554-014-0556-z. PMid:25341407.

Ughi GJ, Adriaenssens T, Desmet W, D’hooge J. Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo. Biomedical Optics Express. 2012a; 3(12):3291-303. http://dx.doi.org/10.1364/BOE.3.003291. PMid:23243578.

Ughi GJ, Adriaenssens T, Onsea K, Dubois C, Coosemans M, Sinnaeve P, Desmet W, D’hooge J. Automated volumetric stent analysis of in-vivo intracoronary Optical Coherence Tomography three-dimensional datasets. In: Proceedings of SPIE 8091, Optical Coherence Tomography and Coherence Techniques; 2012 Fev 9-16; San Francinco, EUA. San Francisco: SPIE; 2012b. p. 809110-8.

Ughi GJ, Adriaenssens T, Sinnaeve P, Desmet W, D’hooge J. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images. Biomedical Optics Express. 2013; 4(7):1014-30. http://dx.doi.org/10.1364/BOE.4.001014. PMid:23847728.

Ughi GJ, Steigerwald K, Adriaenssens T, Desmet W, Guagliumi G, Joner M, D’hooge J. Automatic characterization of neointimal tissue by intravascular optical coherence tomography. Journal of Biomedical Optics. 2014; 19(2):21104. http://dx.doi.org/10.1117/1.JBO.19.2.021104. PMid:23884201.

van Soest G, Goderie T, Regar E, Koljenović S, van Leenders GLJH, Gonzalo N, van Noorden S, Okamura T, Bouma BE, Tearney GJ, Oosterhuis JW, Serruys PW, van der Steen AFW. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. Journal of Biomedical Optics. 2010; 15(1):011105. http://dx.doi.org/10.1117/1.3280271. PMid:20210431.

Wang A, Eggermont J, Dekker N, Garcia-Garcia HM, Pawar R, Reiber JHC, Dijkstra J. Automatic stent strut detection in intravascular optical coherence tomographic pullback runs. The International Journal of Cardiovascular Imaging. 2012; 29(1):29-38. http://dx.doi.org/10.1007/s10554-012-0064-y. PMid:22618433.

Wang Z, Jenkins M, Linderman G, Bezerra H, Fujino Y, Costa MA, Wilson DL, Rollins AM. 3-D Stent detection in intravascular OCT using a Bayesian network and graph search. IEEE Transactions on Medical Imaging. 2015; 0062(c):1-14. PMid:25751863.

Wang Z, Kyono H, Bezerra HG, Wang H, Gargesha M, Alraies C, Xu C, Schmitt JM, Wilson DL, Costa MA, Rollins AM. Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images. Journal of Biomedical Optics. 2010; 15(6):61711. http://dx.doi.org/10.1117/1.3506212.

Xu C, Schmitt JM, Akasaka T, Kubo T, Huang K. Automatic detection of stent struts with thick neointimal growth in intravascular optical coherence tomography image sequences. Physics in Medicine and Biology. 2011; 56(20):6665-75. http://dx.doi.org/10.1088/0031-9155/56/20/010. PMid:21946129.

Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002; 106(13):1640-5. http://dx.doi.org/10.1161/01.CIR.0000029927.92825.F6. PMid:12270856.

Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research. 1983; 53(4):502-14. http://dx.doi.org/10.1161/01.RES.53.4.502. PMid:6627609.
5889fbf95d01231a018b4897 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections