Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.07417
Research on Biomedical Engineering
Original article

Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG  

Ana Cecilia Villa-Parra, Denis Delisle-Rodriguez, Thomaz Botelho, John Jairo Villarejo Mayor, Alberto López Delis, Ricardo Carelli, Anselmo Frizera Neto, Teodiano Freire Bastos

Downloads: 0
Views: 676

Abstract

Introduction: This work presents the development of a novel robotic knee exoskeleton controlled by motion intention based on sEMG, which uses admittance control to assist people with reduced mobility and improve their locomotion. Clinical research remark that these devices working in constant interaction with the neuromuscular and skeletal human system improves functional compensation and rehabilitation. Hence, the users become an active part of the training/rehabilitation, facilitating their involvement and improving their neural plasticity. For recognition of the lower-limb motion intention and discrimination of knee movements, sEMG from both lower-limb and trunk are used, which implies a new approach to control robotic assistive devices. Methods: A control system that includes a stage for human-motion intention recognition (HMIR), based on techniques to classify motion classes related to knee joint were developed. For translation of the user’s intention to a desired state for the robotic knee exoskeleton, the system also includes a finite state machine and admittance, velocity and trajectory controllers with a function that allows stopping the movement according to the users intention. Results: The proposed HMIR showed an accuracy between 76% to 83% for lower-limb muscles, and 71% to 77% for trunk muscles to classify motor classes of lower-limb movements. Experimental results of the controller showed that the admittance controller proposed here offers knee support in 50% of the gait cycle and assists correctly the motion classes. Conclusion: The robotic knee exoskeleton introduced here is an alternative method to empower knee movements using sEMG signals from lower-limb and trunk muscles.

Keywords

Robotic knee exoskeleton, Electromyography, Trunk muscles, User intention recognition, Admittance control.

References

Agostini V, Balestra G, Knaflitz M. Segmentation and classification of gait cycles. IEEE Trans Neural Syst Rehabil Eng. 2014; 22(5):946-52. http://dx.doi.org/10.1109/TNSRE.2013.2291907. PMid:24760911.

Arazpour M, Moradi A, Samadian M, Bahramizadeh M, Joghtaei M, Ahmadi Bani M, Hutchins SW, Mardani MA. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: a pilot study. Prosthet Orthot Int. 2016; 40(3):377-83. http://dx.doi.org/10.1177/0309364615592703. PMid:26184037.

Arnos PM. Age-related changes in gait: influence of upper-body posture. Toledo: University of Toledo; 2007.

Cao J, Xie SQ, Das R, Zhu GL. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects. Med Eng Phys. 2014; 36(12):1555-66. http://dx.doi.org/10.1016/j.medengphy.2014.08.005. PMid:25205588.

Ceccato J-C, Sèze M, Azevedo C, Cazalets J-R. Comparison of trunk activity during gait initiation and walking in humans. PLoS One. 2009; 4(12):e8193. http://dx.doi.org/10.1371/journal.pone.0008193. PMid:19997606.

Chen B, Ma H, Qin L-Y, Gao F, Chan K-M, Law S-W, Qin L, Liao W-H. Recent developments and challenges of lower extremity exoskeletons. J Orthop Transl. 2016; 5(Supplement C):26-37.

Chen B, Ma H, Qin LY, Guan X, Chan KM, Law SW, Qin L, Liao WH. Design of a lower extremity exoskeleton for motion assistance in paralyzed individuals. IEEE International Conference on Robotics and Biomimetics (ROBIO); 6-9 Dec 2015; Zhuhai, China. New York: IEEE; 2015. p. 144-9. http://dx.doi.org/10.1109/ROBIO.2015.7418758.

Chen G, Chan CK, Guo Z, Yu H. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev Biomed Eng. 2013; 41(4–5):343-63. http://dx.doi.org/10.1615/CritRevBiomedEng.2014010453. PMid:24941413.

Contreras-Vidal JL, A Bhagat N, Brantley J, Cruz-Garza JG, He Y, Manley Q, Nakagome S, Nathan K, Tan SH, Zhu F, Pons JL Powered exoskeletons for bipedal locomotion after spinal cord injury. J Neural Eng. 2016; 13(3):031001. http://dx.doi.org/10.1088/1741-2560/13/3/031001. PMid:27064508.

Del Alma Espinosa AJ. Hybrid walking therapy with fatigue management for spinal cord injured individuals. Leganés: Universidad Carlos III de Madrid; 2013.

Fleischer C, Hommel G. Torque control of an exoskeletal knee with EMG signals. In: Proceedings of The 37th International Symposium on Robotics (ISR) and the 4th German Conference on Robotics; 2006; Munich, Germany. Dusseldorf: VDI Ber; 2006. p. 79-82.

Fleischer C, Wege A, Kondak K, Hommel G. Application of EMG signals for controlling exoskeleton robots. Biomed Tech (Berl). 2006; 51(5-6):314-9. http://dx.doi.org/10.1515/BMT.2006.063. PMid:17155866.

Hussain S, Xie SQ, Jamwal PK. Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans Cybern. 2013; 43(3):1025-34. http://dx.doi.org/10.1109/TSMCB.2012.2222374. PMid:23193241.

Jiménez-Fabián R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys. 2012; 34(4):397-408. http://dx.doi.org/10.1016/j.medengphy.2011.11.018. PMid:22177895.

Kang SJ, Ryu JC, Moon IH, Kim KH, Mun MS. Walker gait analysis of powered gait orthosis for paraplegic. World Congress on Medical Physics and Biomedical Engineering; 2006 Aug-Sep 27-1; Seoul, Korea. Berlin, Heidelberg: Springer; 2007. p. 2889-91. http://dx.doi.org/10.1007/978-3-540-36841-0_730.

Karthikbabu S, Chakrapani M, Ganeshan S, Rakshith KC, Nafeez S, Prem V. A review on assessment and treatment of the trunk in stroke. Neural Regen Res. 2012; 7(25):1974-7. PMid:25624827.

Kiguchi K, Tanaka T, Fukuda T. Neuro-fuzzy control of a robotic exoskeleton with EMG signals. IEEE Trans Fuzzy Syst. 2004; 12(4):481-90. http://dx.doi.org/10.1109/TFUZZ.2004.832525.

Kim SY, Yang L, Park IJ, Kim EJ, Park MSJ, You SH, Kim YH, Ko HY, Shin YI. Effects of innovative WALKBOT robotic-assisted locomotor training on balance and gait recovery in hemiparetic stroke: a prospective, randomized, experimenter blinded case control study with a four-week follow-up. IEEE Trans Neural Syst Rehabil Eng. 2015; 23(4):636-42. http://dx.doi.org/10.1109/TNSRE.2015.2404936. PMid:25850089.

Lee SW, Yi T, Jung JW, Bien Z. Design of a gait phase recognition system that can cope with EMG electrode location variation. IEEE Trans Autom Sci Eng. 2015; 99:1-11.

Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil. 2016; 13(1):53. http://dx.doi.org/10.1186/s12984-016-0162-5. PMid:27278136.

Mayor JJV, Costa RM, Frizera Neto A, Bastos TF. Dexterous hand gestures recognition based on low-density sEMG signals for upper-limb forearm amputees. Res Biomed Eng. 2017; 33(3):202-17. http://dx.doi.org/10.1590/2446-4740.08516.

Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl). 2016; 9:455-66. http://dx.doi.org/10.2147/MDER.S103102. PMid:27042146.

Mizrahi J. Mechanical impedance and its relations to motor control, limb dynamics, and motion biomechanics. J Med Biol Eng. 2015; 35(1):1-20. http://dx.doi.org/10.1007/s40846-015-0016-9. PMid:25750604.

Oskoei MA, Hu H. Myoelectric control systems—A survey. Biomed Signal Process Control. 2007; 2(4):275-94. http://dx.doi.org/10.1016/j.bspc.2007.07.009.

Sèze MP, Cazalets J-R. Anatomical optimization of skin electrode placement to record electromyographic activity of erector spinae muscles. Surg Radiol Anat SRA. 2008; 30(2):137-43. http://dx.doi.org/10.1007/s00276-007-0289-y. PMid:18183349.

Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y. Intention-based walking support for paraplegia patients with robot suit HAL. Adv Robot. 2007; 21(12):1441-69.

Swinnen E, Baeyens J-P, Meeusen R, Kerckhofs E. Methodology of electromyographic analysis of the trunk muscles during walking in healthy subjects: a literature review. J Electromyogr Kinesiol. 2012; 22(1):1-12. http://dx.doi.org/10.1016/j.jelekin.2011.04.005. PMid:21622008.

Sylos-Labini F, La Scaleia V, D’Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari M, Wang S, Wang L, van Asseldonk E, van der Kooij H, Hoellinger T, Cheron G, Thorsteinsson F, Ilzkovitz M, Gancet J, Hauffe R, Zanov F, Lacquaniti F, Ivanenko YP. EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci. 2014; 8:423. http://dx.doi.org/10.3389/fnhum.2014.00423. PMid:24982628.

To CS, Kobetic R, Bulea TC, Audu ML, Schnellenberger JR, Pinault G, Triolo RJ. Stance control knee mechanism for lower-limb support in hybrid neuroprosthesis. J Rehabil Res Dev. 2011; 48(7):839-50. http://dx.doi.org/10.1682/JRRD.2010.07.0135. PMid:21938668.

Tucker MR, Olivier J, Pagel A, Bleuler H, Bouri M, Lambercy O, Millán JR, Riener R, Vallery H, Gassert R. Control strategies for active lower extremity prosthetics and orthotics: a review. J Neuroeng Rehabil. 2015; 12(1):1. http://dx.doi.org/10.1186/1743-0003-12-1. PMid:25557982.

Villa-Parra AC, Broche L, Delisle-Rodríguez D, Sagaró R, Bastos T, Frizera-Neto A. Design of active orthoses for a robotic gait rehabilitation system. Front Mech Eng. 2015; 10(3):242-54. http://dx.doi.org/10.1007/s11465-015-0350-1.

Villa-Parra AC, Delisle-Rodriguez D, Lima JS, Frizera-Neto A, Bastos T. Knee impedance modulation to control an active orthosis using insole sensors. Sensors (Basel). 2017; 17(12):2751. http://dx.doi.org/10.3390/s17122751. PMid:29182569.

Viteckova S, Kutilek P, Jirina M. Wearable lower limb robotics: a review. Biocybern Biomed Eng. 2013; 33(2):96-105. http://dx.doi.org/10.1016/j.bbe.2013.03.005.

Wentink EC, Beijen SI, Hermens HJ, Rietman JS, Veltink PH. Intention detection of gait initiation using EMG and kinematic data. Gait Posture. 2013; 37(2):223-8. http://dx.doi.org/10.1016/j.gaitpost.2012.07.013. PMid:22917647.

Zacharias B, Kannenberg A. clinical benefits of stance control orthosis systems: an analysis of the scientific literature. J Prosthet Orthot. 2012; 24(1):2-7. http://dx.doi.org/10.1097/JPO.0b013e3182435db3.

5ba6dcf70e8825ed5a36c1ef rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections