Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.0720
Research on Biomedical Engineering
Original Article

Biomechanical performance of Bio Cross-Pin and EndoButton for ACL reconstruction at femoral side: a porcine model

Moré, Ari Digiácomo Ocampo; Pizzolatti, André Luiz Almeida; Fancello, Eduardo Alberto; Roesler, Carlos Rodrigo de Mello

Downloads: 0
Views: 802

Abstract

Introduction: The method of graft fixation is critical in anterior cruciate ligament (ACL) reconstruction surgery. Success of surgery is totally dependent on the ability of the implant to secure the graft inside the bone tunnel until complete graft integration. The principle of EndoButton is based on the cortical suspension of the graft. The Cross-Pin is based on graft expansion. The aim of this study was to evaluate the biomechanical performance of EndoButton and Bio Cross-Pin to fix the hamstring graft at femoral side of porcine knee joints and evaluate whether they are able to support of loading applied on graft during immediate post-operative tasks. Methods: Fourteen ACL reconstructions were carried out in porcine femurs fixing superficial flexor tendons with Titanium EndoButton (n = 7) and with 6 × 50 mm HA/PLLA Bio Cross-Pin (n = 7). A cyclic loading test was applied with 50-250 N of tensile force at 1 Hz for 1000 cycles. The displacement was measured at 20, 100, 500 and 1000 load cycles to quantify the slippage of the graft during the test. Single-cycle load-to-failure test was performed at 50 N/mm to measure fixation strength. Results: The laxity during cyclic loading and the displacement to failure during single-cycle test were lower for the Bio Cross-Pin fixation (8.21 ± 1.72 mm) than the EndoButton (11.20 ± 2.00 mm). The Bio Cross-Pin (112.22 ± 21.20 N.mm–1) was significantly stiffer than the EndoButton fixation (60.50 ±10.38 N.mm–1). There was no significant difference between Bio Cross-Pin (failure loading: 758.29 ± 188.05 N; yield loading: 713.67 ± 192.56 N) and EndoButton strength (failure loading: 672.52 ± 66.56 N; yield loading: 599.91 ± 59.64 N). Both are able to support the immediate post-operative loading applied (445 N). Conclusion: The results obtained in this experiment indicate that the Bio Cross-Pin technique promote stiffer fixation during cyclic loading as compared with EndoButton. Both techniques are able to support the immediate post-operative loading applied.

Keywords

Biomechanics, ACL reconstruction, EndoButton, Bioabsorbable Cross-Pin

References

Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN. Mechanical Properties of Soft Tissue Femoral Fixation Devices for Anterior Cruciate Ligament Reconstruction. The American Journal of Sports Medicine. 2004; 32(3):635-40. http://dx.doi.org/10.1177/0363546503261714. PMid:15090378.

Becker R, Voigt D, Stärke C, Heymann M, Wilson GA, Nebelung W. Biomechanical properties of quadruple tendon and patellar tendon femoral fixation techniques. Knee Surgery, Sports Traumatology, Arthroscopy. 2001; 9(6):337-42. http://dx.doi.org/10.1007/s001670100223. PMid:11734869.

Blickenstaff KR, Grana WA, Egle D. Analysis of a semitendinosus autograft in a rabbit model. The American Journal of Sports Medicine. 1997; 25(4):554-9. http://dx.doi.org/10.1177/036354659702500420. PMid:9240991.

Brown GA, Peña F, Grøntvedt T, Labadie D, Engebretsen L. Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surgery Sports Traumatology. 1996; 3(4):238-44. http://dx.doi.org/10.1007/BF01466626. PMid:8739721.

Brown CH Jr, David RW, Hecker AT, Ferragamo M. FGraft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament femoral graft fixation under cyclic loading. Journal of Arthroscopy and Related Surgery. 2004; 20(9):922-35. http://dx.doi.org/10.1007/BF01466626. PMid:8739721.

Conner CS, Perez BA, Morris RP, Buckner JW, Buford WL, Ivey FM. Three femoral fixation devices for anterior cruciate ligament reconstruction: Comparison of fixation on the lateral cortex versus the anterior cortex. Journal of Arthroscopy and Related Surgery. 2010; 26(6):796-807. http://dx.doi.org/10.1016/j.arthro.2009.10.015. PMid:20511038.

Fu FH, Bennett CH, Lattermann C. Current concepts current trends in anterior cruciate ligament peconstruction - Part 1: biology and biomechanics of reconstruction. The American Journal of Sports Medicine. 1999; 27(6):821-30. PMid:10569374.

Giurea M, Zorilla P, Amis AA, Aichroth P. Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. The American Journal of Sports Medicine. 1999; 27(5):621-5. PMid:10496580.

Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC. Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. The Journal of Bone and Joint Surgery. 1999; 81(4):549-57. PMid:10225801.

Höher J, Scheffler SU, Withrow JD, Livesay GA, Debski RE, Fu FH, Woo SL. Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. Journal of Orthopaedic Research. 2000; 18(3):456-61. http://dx.doi.org/10.1002/jor.1100180319. PMid:10937634.

Kousa P, Järvinen TLN, Vihavainen M, Kannus P. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction: Part I: Femoral site. The American Journal of Sports Medicine. 2003a; 31:174-81.

Kousa P, Järvinen TLN, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction: Part II - Tibial site. The American Journal of Sports Medicine. 2003b; 31(2):182-8. PMid:12642250.

Magen HE, Howell SM, Hull ML. Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. The American Journal of Sports Medicine. 1999; 27(1):35-43. PMid:9934416.

Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C. Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. The Journal of Arthroscopic & Related Surgery. 2006; 22(6):660-8. http://dx.doi.org/10.1016/j.arthro.2006.04.082. PMid:16762706.

Miyata K, Yasuda K, Kondo E, Nakano H, Kimura S, Hara N. Biomechanical comparisons of anterior cruciate ligament: reconstruction procedures with flexor tendon graft. Journal of Orthopaedic Science. 2000; 5(6):585-92. http://dx.doi.org/10.1007/s007760070010. PMid:11180923.

Morrison JB. The mechanics of the knee joint in relation to normal walking. Journal of Biomechanics. 1970; 3(1):51-61. http://dx.doi.org/10.1016/0021-9290(70)90050-3. PMid:5521530.

Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. Journal of Bone and Joint Surgery. 1984; 66(3):344-52. PMid:6699049.

Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel: a biomechanical and histological study in the dog. Journal of Bone Joint Surgery. 1993; 75(12):1795-803. PMid:8258550.

Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion? The American Journal of Sports Medicine. 2006; 34(11):1790-800. http://dx.doi.org/10.1177/0363546506290059. PMid:16861579.

Rodríguez C, García TE, Montes S, Rodríguez L, Maestro A. In vitro comparison between cortical and cortico-cancellous femoral suspension devices for anterior cruciate ligament reconstruction: implications for mobilization. Knee Surgery, Sports Traumatology, Arthroscopy. 2014; 23(8):2324-9. PMid:24839039.

Rupp S, Seil R, Schneider A, Kohn DM. Ligament graft initial fixation strength using biodegradable interference screws. Journal of Biomedical Materials Research. 1999; 48(1):70-4. http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:1<70::AID-JBM12>3.0.CO;2-P. PMid:10029152.

Rylander L, Brunelli J, Taylor M, Baldini T, Ellis B, Hawkins M, McCarty E. A biomechanical comparison of anterior cruciate ligament suspensory fixation devices in a porcine cadaver model. Clinical Biomechanics (Bristol, Avon). 2014; 29(2):230-4. http://dx.doi.org/10.1016/j.clinbiomech.2013.11.001. PMid:24321231.

Shen HC, Chang JH, Lee CH, Shen PH, Yeh TT, Wu CC, Kuo CL. Biomechanical comparison of Cross-Pin and Endobutton femoral fixation of a flexor tendon graft for anterior cruciate ligament reconstruction - A porcine femur-graft-tibia complex study. The Journal of Surgical Research. 2010; 161(2):282-7. http://dx.doi.org/10.1016/j.jss.2009.01.015. PMid:19524939.

To JT, Howell SM, Hull ML. Contributions of femoral fixation methods to the stiffness of anterior cruciate ligament replacements at implantation. Arthroscopy. 1999; 15(4):379-87. http://dx.doi.org/10.1016/S0749-8063(99)70055-1. PMid:10355713.

Trump M, Palathinkal DM, Beaupre L, Otto D, Leung P, Amirfazli A. In vitro biomechanical testing of anterior cruciate ligament reconstruction: traditional versus physiologically relevant load analysis. The Knee. 2011; 18(3):193-201. http://dx.doi.org/10.1016/j.knee.2010.04.011. PMid:20570155.

Weiler A, Peine R, Pashmineh-Azar A, Abel C, Sudkamp NP, Hoffmann RF. Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy. 2002a; 18(2):113-23. http://dx.doi.org/10.1053/jars.2002.30656. PMid:11830804.

Weiler A, Hoffmann RFG, Bail HJ, Rehm O, Südkamp NP. Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. The Journal of Arthroscopic Related Surgery. 2002b; 18(2):124-35. http://dx.doi.org/10.1053/jars.2002.30657. PMid:11830805.

Wilson TW, Zafuta MP, Zobitz M. A biomechanical analysis of matched bone-patellar tendon-bone and double-looped semitendinosus and gracilis tendon grafts. The Journal of Sports Medicine. 1999; 27(2):202-7. PMid:10102102.

Wu JL, Yeh TT, Shen HC, Cheng CK, Lee CH. Mechanical comparison of biodegradable femoral fixation devices for hamstring tendon graft - A biomechanical study in a porcine model. Clinical Biomechanics (Bristol, Avon). 2009; 24(5):435-40. http://dx.doi.org/10.1016/j.clinbiomech.2009.02.003. PMid:19303181.

Zhang AL, Lewicky YM, Oka R, Mahar A, Pedowitz R. Biomechanical analysis of femoral tunnel pull-out angles for anterior cruciate ligament reconstruction with bioabsorbable and metal interference screws. The American Journal of Sports Medicine. 2007; 35(4):637-42. http://dx.doi.org/10.1177/0363546506295181. PMid:17218654.
5889fbf95d01231a018b4899 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections