Polymer-based surface plasmon resonance biochip: construction and experimental aspects
Moreira, Cleumar da Silva; Oliveira, Leiva Casemiro; Fischer, Robert; Medeiros, Eliton Souto; Lima, Antonio Marcus Nogueira; Neff, Helmut
http://dx.doi.org/10.1590/2446-4740.0709
Res. Biomed. Eng., vol.32, n1, p.92-103, 2016
Downloads: 1
Views: 1046
Abstract
Introduction: Surface plasmon resonance biosensors are high sensitive analytical instruments that normally employ glass materials at the optical substrate layer. However, the use of polymer-based substrates is increasing in the last years due to favorable features, like: disposability, ease to construction and low-cost design. Review: Recently, a polymer-based SPR biochip was proposed by using monochromatic and polychromatic input sources. Its construction and experimental considerations are detailed here. Experimental considerations and results, aspects from performance characteristics (resonance parameters, sensitivity and full width at half maximum – FWHM – calculations) are presented for hydrophilic and hydrophobic solutions. It is included also a brief description of the state of the art of polymer-based SPR biosensors.
Keywords
Polymer-based SPR, Biochip, Biosensor, Surface plasmon resonance
References
Arima Y, Toda M, Iwata H. Surface plasmon resonance in monitoring of complement activation on biomaterials. Advanced Drug Delivery Reviews. 2011; 63(12):988-99. http://dx.doi.org/10.1016/j.addr.2011.06.018. PMid:21803085.
Atar N, Eren T, Yola ML, Wang S. A sensitive molecular imprinted surface plasmon resonance nanosensor for selective determination of trace triclosan in wastewater. Sensors and Actuators. B, Chemical. 2015; 216:638-44. http://dx.doi.org/10.1016/j.snb.2015.04.076.
Carvalho RM, Rath S, Kubota LT. SPR - Uma nova ferramenta para biosensores. Quimica Nova. 2006; 26:299-304.
Cennamo N, Varriale A, Pennacchio A, Staiano M, Massarotti D, Zeni L, D’Auria S. An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sensors and Actuators. B, Chemical. 2013; 176:1008-14. http://dx.doi.org/10.1016/j.snb.2012.10.055.
Cennamo N, Zeni L. Bio and chemical sensors based on surface plasmon resonance in a plastic optical fiber. In: Sulaiman Y, Harun SW and Arof H. Optical sensors – new developments and practical applications. Rijeka: INTECH; 2014. p. 119-40.
Chinowsky TM, Quinn JG, Bartholomew DU, Kaiser R, Elkind JL. Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. Sensors and Actuators. B, Chemical. 2003; 91(1-3):266-74. http://dx.doi.org/10.1016/S0925-4005(03)00113-8.
Chinowsky TM, Soelberg SD, Baker P, Swanson NR, Kauffman P, Mactutis A, Grow MS, Atmar R, Yee SS, Furlong CE. Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosensors & Bioelectronics. 2007; 22(9-10):2268-75. http://dx.doi.org/10.1016/j.bios.2006.11.026. PMid:17223032.
Dash JN, Jha R. SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technology Letters. 2014; 26(6):595-8. http://dx.doi.org/10.1109/LPT.2014.2301153.
DiPippo W, Lee BJ, Park K. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range. Optics Express. 2010; 18(18):19396-406. http://dx.doi.org/10.1364/OE.18.019396. PMid:20940835.
Elkind JL, Stimpson DI, Strong AA, Bartholomew DU, Melendez JL. A commercial solution for surface plasmon sensing. Sensors and Actuators. B, Chemical. 1999; 54(1-2):182-90. http://dx.doi.org/10.1016/S0925-4005(98)00336-0.
Ghosh S, Ray M. Analysis of silicon based surface plasmon resonance sensors with different amino acids. Silicon. 2015; 7(4):313-22. http://dx.doi.org/10.1007/s12633-015-9293-8.
Guo J, Keathley PD, Hastings JT. Dual-mode surface-plasmon-resonance sensors using angular interrogation. Optics Letters. 2008; 33(5):512-4. http://dx.doi.org/10.1364/OL.33.000512. PMid:18311309.
Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Optics Express. 2006; 14(24):11616-21. http://dx.doi.org/10.1364/OE.14.011616. PMid:19529581.
Hoa XD, Kirk AG, Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosensors & Bioelectronics. 2007; 23(2):151-60. http://dx.doi.org/10.1016/j.bios.2007.07.001. PMid:17716889.
Homola J, Vaisocherová H, Dostálek J, Piliarik M. Multi-analyte surface plasmon resonance biosensing. Methods. 2005; 37(1):26-36. http://dx.doi.org/10.1016/j.ymeth.2005.05.003. PMid:16199172.
Homola J. Surface plasmon resonance based sensors. Amsterdam: Springer; 2006.
Hu C, Gan N, Chen Y, Bi L, Zhang X, Song L. Detection of microcystins in environmental samples using surface plasmon resonance biosensor. Talanta. 2009; 80(1):407-10. http://dx.doi.org/10.1016/j.talanta.2009.06.044. PMid:19782244.
Kasztelanic R. Parallel multichannel architecture for surface plasmon resonance sensors. Journal of the European Optical Society. 2012; 7:12038. http://dx.doi.org/10.2971/jeos.2012.12038.
Kuang KSC, Cantwell WJ, Scully PJ. An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements. Measurement Science & Technology. 2002; 13(10):1523-34. http://dx.doi.org/10.1088/0957-0233/13/10/303.
Kumbhat S, Sharma K, Gehlot R, Solanki A, Joshi V. Surface plasmon resonance based immunosensor for serological diagnosis of dengue virus infection. Journal of Pharmaceutical and Biomedical Analysis. 2010; 52(2):255-9. http://dx.doi.org/10.1016/j.jpba.2010.01.001. PMid:20097030.
Le Person JL, Colas F, Compère C, Lehaitre M, Anne M-L, Boussard-Plédel C, Bureau B, Adam J-L, Deputier S, Guilloux-Viry M. Surface plasmon resonance in chalcogenide glass-based optical system. Sensors and Actuators. B, Chemical. 2008; 130(2):771-6. http://dx.doi.org/10.1016/j.snb.2007.10.067.
Lee HW, Schmidt MA, Russell RF, Joly NY, Tyagi HK, Uebel P, Russell P. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Optics Express. 2011; 19(13):12180-9. http://dx.doi.org/10.1364/OE.19.012180. PMid:21716455.
Liedberg B, Nylander C, Lundström I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators. 1983; 4: 299-304.
Loureiro FCCL, Barreto AGS No, Lima AMN, Moreira CS, Neff H. Molecular transport and mutual diffusion measurement method in a micro-fluidic system, based on surface plasmon resonance spectroscopy. Procedia Chemistry. 2009; 1(1):1099-102. http://dx.doi.org/10.1016/j.proche.2009.07.274.
Loureiro FCCL, Barreto AGS No, Moreira CS, Lima AMN, Neff H. A method for determining the mutual diffusion coefficient of molecular solutes based on surface plasmon resonance sensing. Sensors and Actuators. B, Chemical. 2011; 154(2):129-36. http://dx.doi.org/10.1016/j.snb.2010.02.023.
Maier SA. Plasmonics: fundamentals and applications. New York: Springer; 2007.
Moreira CS, Barreto AGS No, Lima AMN, Thirstrup C, Neff H. Exchangeable low cost polymer biosensor chip for surface plasmon resonance spectroscopy. Procedia Chemistry. 2009; 1(1):1479-82.
Moreira CS, Lima AMN, Neff H, Thirstrup C. Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold–water interface. Sensors and Actuators. B, Chemical. 2008; 134(2):854-62. http://dx.doi.org/10.1016/j.snb.2008.06.045.
Moreira CS. Projeto e realização de um biochip óptico para aplicações biológicas baseado no principio de ressonância de plásmons de superfície [thesis]. Campina Grande: Universidade Federal de Campina Grande; 2010.
Mukhopadhyay R. Surface plasmon resonance instruments diversify. Analytical Chemistry. 2005; 77(15):313A-7A. http://dx.doi.org/10.1021/ac053440n.
Myszka DG, Rich RL. Implementing surface plasmon resonance biosensors in drug discovery. Pharmaceutical Science & Technology Today. 2000; 3(9):310-7. http://dx.doi.org/10.1016/S1461-5347(00)00288-1. PMid:10996572.
Neff H, Zong W, Lima AMN, Borre M, Holzhüter G. Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films. 2005; 21:1745-52.
Oliveira LC, Moreira CS, Barreto AGS No, Lima AMN, Neff H. Effect of different bimetallic layer combinations on the sensitivity of a SPR polymer biochip. In: Proceedings of the 15th International Meeting on Chemical Sensors – IMCS 2014; 2014 Mar 16-19; Buenos Aires, Argentina. Buenos Aires: IMCS; 2014a. p. 80.
Oliveira LC, Moreira CS, Barreto AGS No, Lima AMN, Neff H. Manufacturing and operational considerations for a polymeric based SPR biochip. In: Proceedings of the 15th International Meeting on Chemical Sensors – IMCS 2014; 2014 Mar 16-19; Buenos Aires, Argentina. Buenos Aires: IMCS; 2014b. p. 98.
Oliveira LC, Moreira CS, Thirstrup C, Melcher EUK, Lima AMN, Neff H. A surface plasmon resonance biochip that operates both in the angular and wavelength interrogation modes. IEEE Transactions on Instrumentation and Measurement. 2013; 62(5):1223-32. http://dx.doi.org/10.1109/TIM.2012.2232433.
Oliveira LC. Sistema computacional para biossensor baseado na ressonância de plasma de superfície [dissertation]. Campina Grande: Universidade Federal de Campina Grande; 2011.
Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei. 1968; 216:398-410.
Patskovsky S, Kabashin AV, Meunier M, Luong JHT. Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes. Applied Optics. 2003; 42(34):6905-9. http://dx.doi.org/10.1364/AO.42.006905. PMid:14661802.
Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer-Verlag Berlin Heidelberg; 1988. (Springer Tracts in Modern Physics, 111).
Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ. Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sensors and Actuators. B, Chemical. 2012; 173:244-9. http://dx.doi.org/10.1016/j.snb.2012.07.010.
Rusnati M, Presta M. Angiogenic growth factors interactome and drug discovery: the contribution of surface plasmon resonance. Cytokine & Growth Factor Reviews. 2015; 26(3):293-310. http://dx.doi.org/10.1016/j.cytogfr.2014.11.007. PMid:25465594.
Santiago MFS, Silva TB, Mozzini MH, Coutinho IBG, Medeiros ES, Cruz RMS, Moreira CS. Construction aspects of a plastic optical fiber-based surface plasmon resonance biochip. Proceedings of the 24th Optical Fiber Conference; 2015 Sept 28 - Oct 02; Curitiba, Brasil. Curitiba: UTFPR; 2015.
Schasfoort RBM, Tudos AJ. Handbook of surface plasmon resonance. Cambridge: RCS Publishing; 2008.
Sener G, Uzun L, Say R, Denizli A. Use of molecular imprinted nanoparticles as biorecognition element on surface plasmon resonance sensor. Sensors and Actuators. B, Chemical. 2011; 160(1):791-9. http://dx.doi.org/10.1016/j.snb.2011.08.064.
Sexton BA, Feltis BN, Davis TJ. Characterization of gold surface plasmon resonance sensor substrates. Sensors and Actuators. A, Physical. 2008; 141(2):471-5. http://dx.doi.org/10.1016/j.sna.2007.10.020.
Sharma AK, Jha R, Gupta BD. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors Journal. 2007; 7(8):1118-29. http://dx.doi.org/10.1109/JSEN.2007.897946.
Šípová H, Homola J. Surface plasmon resonance sensing of nucleic acids: a review. Analytica Chimica Acta. 2013; 773:9-23. http://dx.doi.org/10.1016/j.aca.2012.12.040. PMid:23561902.
Situ C, Mooney MH, Elliott CT, Buijs J. Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. Trends in Analytical Chemistry. 2010; 29(11):1305-15. http://dx.doi.org/10.1016/j.trac.2010.09.003.
Souza CA Fo. Desenvolvimento de um Sistema Eletrônico de Aquisição e Processamento para Biosensores [dissertation]. Campina Grande: Universidade Federal de Campina Grande; 2006.
Thillaivinayagalingam P, Gommeaux J, McLoughlin M, Collins D, Newcombe AR. Biopharmaceutical production: applications of surface plasmon resonance biosensors. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. 2010; 878(2):149-53. http://dx.doi.org/10.1016/j.jchromb.2009.08.040. PMid:19762290.
Thirstrup C, Zong W, Borre M, Neff H, Pedersen HC, Holzhueter G. Diffractive optical coupling element for surface plasmon resonance sensors. Sensors and Actuators. B, Chemical. 2004; 100(3):298-308. http://dx.doi.org/10.1016/j.snb.2004.01.010.
Vasile GC, Vasile IM, Sava V. A method to remove optical fibers coating. UPB Science Bulletin. 2013; 75:155-60.
Vivien L, Pavesi L. Handbook of Silicon Photonics. Boca Raton: CRC Press. 2013.
Wang T-J, Tu C-W, Liu F-K, Chen H-L. Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation. IEEE Photonics Technology Letters. 2004; 16(7):1715-7. http://dx.doi.org/10.1109/LPT.2004.828376.
Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry. 2007; 58(1):267-97. http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607. PMid:17067281.
Yu R, Shibayama T, Meng X, Takayanagi S, Yoshida Y, Yatsu S, Watanabe S. Effects of nanosecond-pulsed laser irradiation on nanostructure formation on the surface of thin Au films on SiO2 glass substrates. Applied Surface Science. 2014; 289:274-80. http://dx.doi.org/10.1016/j.apsusc.2013.10.149.
Yu X, Zhang Y, Pan S, Shum P, Yan M, Leviantan Y, Li C. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. Journal of Optics. 2010; 12(1).
Zuppella P, Pasqualotto E, Zuccon S, Gerlin F, Corso AJ, Scaramuzza M, De Toni A, Paccagnella A, Pelizzo MG. Palladium on plastic substrates for plasmonic devices. Sensors. 2015; 15(1):1138-47. http://dx.doi.org/10.3390/s150101138. PMid:25585102.
Atar N, Eren T, Yola ML, Wang S. A sensitive molecular imprinted surface plasmon resonance nanosensor for selective determination of trace triclosan in wastewater. Sensors and Actuators. B, Chemical. 2015; 216:638-44. http://dx.doi.org/10.1016/j.snb.2015.04.076.
Carvalho RM, Rath S, Kubota LT. SPR - Uma nova ferramenta para biosensores. Quimica Nova. 2006; 26:299-304.
Cennamo N, Varriale A, Pennacchio A, Staiano M, Massarotti D, Zeni L, D’Auria S. An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sensors and Actuators. B, Chemical. 2013; 176:1008-14. http://dx.doi.org/10.1016/j.snb.2012.10.055.
Cennamo N, Zeni L. Bio and chemical sensors based on surface plasmon resonance in a plastic optical fiber. In: Sulaiman Y, Harun SW and Arof H. Optical sensors – new developments and practical applications. Rijeka: INTECH; 2014. p. 119-40.
Chinowsky TM, Quinn JG, Bartholomew DU, Kaiser R, Elkind JL. Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. Sensors and Actuators. B, Chemical. 2003; 91(1-3):266-74. http://dx.doi.org/10.1016/S0925-4005(03)00113-8.
Chinowsky TM, Soelberg SD, Baker P, Swanson NR, Kauffman P, Mactutis A, Grow MS, Atmar R, Yee SS, Furlong CE. Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosensors & Bioelectronics. 2007; 22(9-10):2268-75. http://dx.doi.org/10.1016/j.bios.2006.11.026. PMid:17223032.
Dash JN, Jha R. SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technology Letters. 2014; 26(6):595-8. http://dx.doi.org/10.1109/LPT.2014.2301153.
DiPippo W, Lee BJ, Park K. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range. Optics Express. 2010; 18(18):19396-406. http://dx.doi.org/10.1364/OE.18.019396. PMid:20940835.
Elkind JL, Stimpson DI, Strong AA, Bartholomew DU, Melendez JL. A commercial solution for surface plasmon sensing. Sensors and Actuators. B, Chemical. 1999; 54(1-2):182-90. http://dx.doi.org/10.1016/S0925-4005(98)00336-0.
Ghosh S, Ray M. Analysis of silicon based surface plasmon resonance sensors with different amino acids. Silicon. 2015; 7(4):313-22. http://dx.doi.org/10.1007/s12633-015-9293-8.
Guo J, Keathley PD, Hastings JT. Dual-mode surface-plasmon-resonance sensors using angular interrogation. Optics Letters. 2008; 33(5):512-4. http://dx.doi.org/10.1364/OL.33.000512. PMid:18311309.
Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Optics Express. 2006; 14(24):11616-21. http://dx.doi.org/10.1364/OE.14.011616. PMid:19529581.
Hoa XD, Kirk AG, Tabrizian M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosensors & Bioelectronics. 2007; 23(2):151-60. http://dx.doi.org/10.1016/j.bios.2007.07.001. PMid:17716889.
Homola J, Vaisocherová H, Dostálek J, Piliarik M. Multi-analyte surface plasmon resonance biosensing. Methods. 2005; 37(1):26-36. http://dx.doi.org/10.1016/j.ymeth.2005.05.003. PMid:16199172.
Homola J. Surface plasmon resonance based sensors. Amsterdam: Springer; 2006.
Hu C, Gan N, Chen Y, Bi L, Zhang X, Song L. Detection of microcystins in environmental samples using surface plasmon resonance biosensor. Talanta. 2009; 80(1):407-10. http://dx.doi.org/10.1016/j.talanta.2009.06.044. PMid:19782244.
Kasztelanic R. Parallel multichannel architecture for surface plasmon resonance sensors. Journal of the European Optical Society. 2012; 7:12038. http://dx.doi.org/10.2971/jeos.2012.12038.
Kuang KSC, Cantwell WJ, Scully PJ. An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements. Measurement Science & Technology. 2002; 13(10):1523-34. http://dx.doi.org/10.1088/0957-0233/13/10/303.
Kumbhat S, Sharma K, Gehlot R, Solanki A, Joshi V. Surface plasmon resonance based immunosensor for serological diagnosis of dengue virus infection. Journal of Pharmaceutical and Biomedical Analysis. 2010; 52(2):255-9. http://dx.doi.org/10.1016/j.jpba.2010.01.001. PMid:20097030.
Le Person JL, Colas F, Compère C, Lehaitre M, Anne M-L, Boussard-Plédel C, Bureau B, Adam J-L, Deputier S, Guilloux-Viry M. Surface plasmon resonance in chalcogenide glass-based optical system. Sensors and Actuators. B, Chemical. 2008; 130(2):771-6. http://dx.doi.org/10.1016/j.snb.2007.10.067.
Lee HW, Schmidt MA, Russell RF, Joly NY, Tyagi HK, Uebel P, Russell P. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Optics Express. 2011; 19(13):12180-9. http://dx.doi.org/10.1364/OE.19.012180. PMid:21716455.
Liedberg B, Nylander C, Lundström I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators. 1983; 4: 299-304.
Loureiro FCCL, Barreto AGS No, Lima AMN, Moreira CS, Neff H. Molecular transport and mutual diffusion measurement method in a micro-fluidic system, based on surface plasmon resonance spectroscopy. Procedia Chemistry. 2009; 1(1):1099-102. http://dx.doi.org/10.1016/j.proche.2009.07.274.
Loureiro FCCL, Barreto AGS No, Moreira CS, Lima AMN, Neff H. A method for determining the mutual diffusion coefficient of molecular solutes based on surface plasmon resonance sensing. Sensors and Actuators. B, Chemical. 2011; 154(2):129-36. http://dx.doi.org/10.1016/j.snb.2010.02.023.
Maier SA. Plasmonics: fundamentals and applications. New York: Springer; 2007.
Moreira CS, Barreto AGS No, Lima AMN, Thirstrup C, Neff H. Exchangeable low cost polymer biosensor chip for surface plasmon resonance spectroscopy. Procedia Chemistry. 2009; 1(1):1479-82.
Moreira CS, Lima AMN, Neff H, Thirstrup C. Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold–water interface. Sensors and Actuators. B, Chemical. 2008; 134(2):854-62. http://dx.doi.org/10.1016/j.snb.2008.06.045.
Moreira CS. Projeto e realização de um biochip óptico para aplicações biológicas baseado no principio de ressonância de plásmons de superfície [thesis]. Campina Grande: Universidade Federal de Campina Grande; 2010.
Mukhopadhyay R. Surface plasmon resonance instruments diversify. Analytical Chemistry. 2005; 77(15):313A-7A. http://dx.doi.org/10.1021/ac053440n.
Myszka DG, Rich RL. Implementing surface plasmon resonance biosensors in drug discovery. Pharmaceutical Science & Technology Today. 2000; 3(9):310-7. http://dx.doi.org/10.1016/S1461-5347(00)00288-1. PMid:10996572.
Neff H, Zong W, Lima AMN, Borre M, Holzhüter G. Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films. 2005; 21:1745-52.
Oliveira LC, Moreira CS, Barreto AGS No, Lima AMN, Neff H. Effect of different bimetallic layer combinations on the sensitivity of a SPR polymer biochip. In: Proceedings of the 15th International Meeting on Chemical Sensors – IMCS 2014; 2014 Mar 16-19; Buenos Aires, Argentina. Buenos Aires: IMCS; 2014a. p. 80.
Oliveira LC, Moreira CS, Barreto AGS No, Lima AMN, Neff H. Manufacturing and operational considerations for a polymeric based SPR biochip. In: Proceedings of the 15th International Meeting on Chemical Sensors – IMCS 2014; 2014 Mar 16-19; Buenos Aires, Argentina. Buenos Aires: IMCS; 2014b. p. 98.
Oliveira LC, Moreira CS, Thirstrup C, Melcher EUK, Lima AMN, Neff H. A surface plasmon resonance biochip that operates both in the angular and wavelength interrogation modes. IEEE Transactions on Instrumentation and Measurement. 2013; 62(5):1223-32. http://dx.doi.org/10.1109/TIM.2012.2232433.
Oliveira LC. Sistema computacional para biossensor baseado na ressonância de plasma de superfície [dissertation]. Campina Grande: Universidade Federal de Campina Grande; 2011.
Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei. 1968; 216:398-410.
Patskovsky S, Kabashin AV, Meunier M, Luong JHT. Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes. Applied Optics. 2003; 42(34):6905-9. http://dx.doi.org/10.1364/AO.42.006905. PMid:14661802.
Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer-Verlag Berlin Heidelberg; 1988. (Springer Tracts in Modern Physics, 111).
Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ. Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sensors and Actuators. B, Chemical. 2012; 173:244-9. http://dx.doi.org/10.1016/j.snb.2012.07.010.
Rusnati M, Presta M. Angiogenic growth factors interactome and drug discovery: the contribution of surface plasmon resonance. Cytokine & Growth Factor Reviews. 2015; 26(3):293-310. http://dx.doi.org/10.1016/j.cytogfr.2014.11.007. PMid:25465594.
Santiago MFS, Silva TB, Mozzini MH, Coutinho IBG, Medeiros ES, Cruz RMS, Moreira CS. Construction aspects of a plastic optical fiber-based surface plasmon resonance biochip. Proceedings of the 24th Optical Fiber Conference; 2015 Sept 28 - Oct 02; Curitiba, Brasil. Curitiba: UTFPR; 2015.
Schasfoort RBM, Tudos AJ. Handbook of surface plasmon resonance. Cambridge: RCS Publishing; 2008.
Sener G, Uzun L, Say R, Denizli A. Use of molecular imprinted nanoparticles as biorecognition element on surface plasmon resonance sensor. Sensors and Actuators. B, Chemical. 2011; 160(1):791-9. http://dx.doi.org/10.1016/j.snb.2011.08.064.
Sexton BA, Feltis BN, Davis TJ. Characterization of gold surface plasmon resonance sensor substrates. Sensors and Actuators. A, Physical. 2008; 141(2):471-5. http://dx.doi.org/10.1016/j.sna.2007.10.020.
Sharma AK, Jha R, Gupta BD. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors Journal. 2007; 7(8):1118-29. http://dx.doi.org/10.1109/JSEN.2007.897946.
Šípová H, Homola J. Surface plasmon resonance sensing of nucleic acids: a review. Analytica Chimica Acta. 2013; 773:9-23. http://dx.doi.org/10.1016/j.aca.2012.12.040. PMid:23561902.
Situ C, Mooney MH, Elliott CT, Buijs J. Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. Trends in Analytical Chemistry. 2010; 29(11):1305-15. http://dx.doi.org/10.1016/j.trac.2010.09.003.
Souza CA Fo. Desenvolvimento de um Sistema Eletrônico de Aquisição e Processamento para Biosensores [dissertation]. Campina Grande: Universidade Federal de Campina Grande; 2006.
Thillaivinayagalingam P, Gommeaux J, McLoughlin M, Collins D, Newcombe AR. Biopharmaceutical production: applications of surface plasmon resonance biosensors. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. 2010; 878(2):149-53. http://dx.doi.org/10.1016/j.jchromb.2009.08.040. PMid:19762290.
Thirstrup C, Zong W, Borre M, Neff H, Pedersen HC, Holzhueter G. Diffractive optical coupling element for surface plasmon resonance sensors. Sensors and Actuators. B, Chemical. 2004; 100(3):298-308. http://dx.doi.org/10.1016/j.snb.2004.01.010.
Vasile GC, Vasile IM, Sava V. A method to remove optical fibers coating. UPB Science Bulletin. 2013; 75:155-60.
Vivien L, Pavesi L. Handbook of Silicon Photonics. Boca Raton: CRC Press. 2013.
Wang T-J, Tu C-W, Liu F-K, Chen H-L. Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation. IEEE Photonics Technology Letters. 2004; 16(7):1715-7. http://dx.doi.org/10.1109/LPT.2004.828376.
Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry. 2007; 58(1):267-97. http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607. PMid:17067281.
Yu R, Shibayama T, Meng X, Takayanagi S, Yoshida Y, Yatsu S, Watanabe S. Effects of nanosecond-pulsed laser irradiation on nanostructure formation on the surface of thin Au films on SiO2 glass substrates. Applied Surface Science. 2014; 289:274-80. http://dx.doi.org/10.1016/j.apsusc.2013.10.149.
Yu X, Zhang Y, Pan S, Shum P, Yan M, Leviantan Y, Li C. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. Journal of Optics. 2010; 12(1).
Zuppella P, Pasqualotto E, Zuccon S, Gerlin F, Corso AJ, Scaramuzza M, De Toni A, Paccagnella A, Pelizzo MG. Palladium on plastic substrates for plasmonic devices. Sensors. 2015; 15(1):1138-47. http://dx.doi.org/10.3390/s150101138. PMid:25585102.