Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.0652
Research on Biomedical Engineering
Original Article

Graft tendon slippage with metallic and bioabsorbable interference screws under cyclic load: a biomechanical study in a porcine model

Moré, Ari Digiácomo Ocampo; Pizzolatti, André Luiz Almeida; Fancello, Eduardo Alberto; Salmoria, Gean Vitor; Roesler, Carlos Rodrigo de Mello

Downloads: 0
Views: 871

Abstract

Introduction: The rupture of the anterior cruciate ligament (ACL) is the most common type of knee injury. Reconstructive surgery is the ‘gold standard’ treatment. During the immediate post-operative period, the fi xation of the graft is entirely dependent on the ability of the grafted implant to be secured inside the bone tunnel under the cyclical loads associated with daily tasks. Poor fi xation can lead to graft slippage, thus impairing the healing and integration of the graft. The aim of this study was to evaluate the biomechanical performance of tendon graft fi xation devices with metallic and bioabsorbable interference screws. Methods: Twenty ACL reconstructions were carried out in porcine tibias using deep fl exor tendons to fi x 9 × 20 mm metallic (n=10) and PLLA 70/30 bioabsorba ble screws (n=10). To verify the ability of a construct to resist immediate postoperative (PO) rehabilitation protocols for immediate load bearing, a cyclic loading test was applied with 50-250 N of tensile force at 1 Hz for 1000 cycles, and the displacement was measured at 10, 50, 100, 500 and 1000 load cycles to quantify the slippage of the graft during the test. After the cyclic loading test, a singlecycle load-to-failure test was applied. Results: The slippage of the graft using metallic screws did not differ (P = 0.616) from that observed when using bioabsorbable screws. Conclusion: The results obtained in this experiment indicate that metallic screws may promote a similar amount of graft slippage during low cyclic loading as bioabsorbable screws. Additionally, there was no difference in the biomechanical performance of these two types of screws during high failure loads.

Keywords

Biomechanics, ACL reconstruction, Interference screw.

References

Almazán A, Miguel A, Odor A, Ibarra JC. Intraoperative incidents and complications in primary arthroscopic anterior cruciate ligament reconstruction. Arthroscopy. 2006; 22(11):1211-7. http://dx.doi.org/10.1016/j.arthro.2006.06.019. PMid:17084299

Anderson AF. Transepiphyseal replacement of the anterior cruciate ligament using quadruple hamstring grafts in skeletally immature patients. The Journal of Bone and Joint Surgery. American Volume. 2004; 86-A(Pt 2, Suppl 1):201-9. PMid:15466760.

Barber FA, Elrod BF, McGuire DA, Paulos LE. Bioscrew fixation of patellar tendon autografts. Biomaterials. 2000; 21(24):2623-9. http://dx.doi.org/10.1016/S0142-9612(00)00130-7. PMid:11071612

Bartz RL, Mossoni K, Tyber J, Tokish J, Gall K, Siparsky PN. A biomechanical comparison of initial fixation strength of 3 different methods of anterior cruciate ligament soft tissue graft tibial fixation: resistance to monotonic and cyclic loading. The American Journal of Sports Medicine. 2007; 35(6):949-54. http://dx.doi.org/10.1177/0363546507301881. PMid:17435059

Baums MH, Zelle BA, Schultz W, Ernstberger T, Klinger HM. Intraarticular migration of a broken biodegradable interference screw after anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA. 2006; 14(9):865-8. http://dx.doi.org/10.1007/s00167-006-0049-2. PMid:16479410

Becker R, Voigt D, Stärke C, Heymann M, Wilson GA, Nebelung W. Biomechanical properties of quadruple tendon and patellar tendon femoral fixation techniques. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA. 2001; 9(6):337-42. http://dx.doi.org/10.1007/s001670100223. PMid:11734869

Beevers DJ. Metal vs bioabsorbable interference screws: initial fixation. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine. 2003; 217(1):59-75. http://dx.doi.org/10.1243/095441103762597746. PMid:12578220

Brand J Jr, Weiler A, Caborn DNM, Brown CH, Johnson DL. Graft fixation in cruciate ligament reconstruction. American Journal of Sports Medicine. 2000; 28(5):761-74. PMid:11032238

Brown GA, Peña F, Grøntvedt T, Labadie D, Engebretsen L. Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA. 1996; 3(4):238-44. http://dx.doi.org/10.1007/BF01466626. PMid:8739721

Cuppone M, Seedhom BB. Effect of implant lengthening and mode of fixation on knee laxity after ACL reconstruction with an artificial ligament: a cadaveric study. Journal of Orthopaedic Science. 2001; 6(3):253-61. http://dx.doi.org/10.1007/s007760100044. PMid:11484120

Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R. Instrumented measurement of anterior laxity of the knee. The Journal of Bone and Joint Surgery. American Volume. 1985; 67(5):720-6. PMid:3997924.

Ekdahl M, Wang JH-C, Ronga M, Fu FH. Graft healing in anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA. 2008; 16(10):935-47. http://dx.doi.org/10.1007/s00167-008-0584-0. PMid:18633596

Fabbriciani C, Mulas PD, Ziranu F, Deriu L, Zarelli D, Milano G. Mechanical analysis of fixation methods for anterior cruciate ligament reconstruction with hamstring tendon graft. An experimental study in sheep knees. The Knee. 2005; 12(2):135-8. http://dx.doi.org/10.1016/j.knee.2004.05.001. PMid:15749449

Frank CB, Jackson DW. The science of reconstruction of the anterior cruciate ligament. The Journal of Bone and Joint Surgery. American Volume. 1997; 79(10):1556-76. PMid:9378743

Fu FH, Bennett CH, Lattermann C, Ma CB. Current trends in anterior cruciate ligament reconstruction. Part 1: Biology and biomechanics of reconstruction. The American Journal of Sports Medicine. 1999; 27(6):821-30. PMid:10569374.

Ghalayini SR, Banks AJ. Re: Bioabsorbabale interference screws used in anterior cruciate ligament reconstruction: potential effects of postoperative infection. The Surgeon: Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland. 2008; 6(1):63. http://dx.doi.org/10.1016/S1479-666X(08)80102-3. PMid:18318092

Giurea M, Zorilla P, Amis AA, Aichroth P. Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. The American Journal of Sports Medicine. 1999; 27(5):621-5. PMid:10496580.

Grover DM, Howell SM, Hull ML. Early tension loss in an anterior cruciate ligament graft. A cadaver study of four tibial fixation devices. The Journal of Bone and Joint Surgery. American Volume. 2005; 87(2):381-90. http://dx.doi.org/10.2106/JBJS.C.01527. PMid:15687163

Hapa O, Barber FA. ACL fixation devices. Sports Medicine and Arthroscopy Review. 2009; 17(4):217-23. http://dx.doi.org/10.1097/JSA.0b013e3181bf668c. PMid:19910779

Ishibashi Y, Rudy TW, Livesay GA, Stone JD, Fu FH, Woo SL-Y. The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy. 1997; 13(2):177-82. http://dx.doi.org/10.1016/S0749-8063(97)90152-3. PMid:9127075

Kaeding C, Farr J, Kavanaugh T, Pedroza A. A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws. Arthroscopy. 2005; 21(2):147-51. http://dx.doi.org/10.1016/j.arthro.2004.09.012. PMid:15689862

Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. The American Journal of Sports Medicine. 2003; 31(2):174-81. PMid:12642249.

Kurosaka M, Yoshiya S, Andrish JT. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. The American Journal of Sports Medicine. 1987; 15(3):225-9. http://dx.doi.org/10.1177/036354658701500306. PMid:3303979

Lopez MJ, Borne A, Monroe WT, Bommala P, Kelly L, Zhang N. Novel anterior cruciate ligament graft fixation device reduces slippage. Medical devices (Auckland, N.Z.). 2013; 6(1):59-68. http://dx.doi.org/10.2147/MDER.S43802. PMid:23717051

Magen HE, Howell SM, Hull ML. Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. The American Journal of Sports Medicine. 1999; 27(1):35-43. PMid:9934416.

Matthews LS, Soffer SR. Pitfalls in the use of interference screws for anterior cruciate ligament reconstruction: brief report. Arthroscopy. 1989; 5(3):225-6. http://dx.doi.org/10.1016/0749-8063(89)90177-1. PMid:2673257

Morrison JB. The mechanics of the knee joint in relation to normal walking. Journal of Biomechanics. 1970; 3(1):51-61. http://dx.doi.org/10.1016/0021-9290(70)90050-3. PMid:5521530

Nakano H, Yasuda K, Tohyama H, Yamanaka M, Wada T, Kaneda K. Interference screw fixation of doubled flexor tendon graft in anterior cruciate ligament reconstruction - biomechanical evaluation with cyclic elongation. Clinical Biomechanics (Bristol, Avon). 2000; 15(3):188-95. http://dx.doi.org/10.1016/S0268-0033(99)00065-0. PMid:10656980

Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. The Journal of Bone and Joint Surgery. American Volume. 1984; 66(3):344-52. PMid:6699049.

Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. The Journal of Bone and Joint Surgery. American Volume. 1993; 75(12):1795-803. PMid:8258550.

Roos PJ, Hull ML, Howell SM. Lengthening of double-looped tendon graft constructs in three regions after cyclic loading: a study using Roentgen stereophotogrammetric analysis. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society. 2004; 22(4):839-46. http://dx.doi.org/10.1016/j.orthres.2003.11.002. PMid:15183443

Rowden NJ, Sher D, Rogers GJ, Schindhelm G. Anterior cruciate ligament graft fixation: Initial comparison of patellar tendon and semitendinosus autografts in young fresh cadavers. American Journal of Sport Medicine. 1997; 25:472-8. http://dx.doi.org/10.1177/036354659702500409.

Rupp S, Seil R, Schneider A, Kohn DM. Ligament graft initial fixation strength using biodegradable interference screws. Journal of Biomedical Materials Research. 1999; 48(1):70-4. http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:1<70::AIDJBM12> 3.0.CO;2-P. PMid:10029152

Shafer BL, Simonian PT. Broken poly-L-lactic acid interference screw after ligament reconstruction. Arthroscopy. 2002; 18(7):E35. http://dx.doi.org/10.1053/jars.2002.32197. PMid:12209420

Tyler TF, McHugh MP, Gleim GW, Nicholas SJ. Association of KT-1000 measurements with clinical tests of knee stability 1 year following anterior cruciate ligament reconstruction. The Journal of Orthopaedic and Sports Physical Therapy. 1999; 29(9):540-5. http://dx.doi.org/10.2519/jospt.1999.29.9.540. PMid:10518296

Weiler A, Hoffmann RF, Stähelin AC, Bail HJ, Siepe CJ, Südkamp NP. Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy. 1998; 14(1):29-37. http://dx.doi.org/10.1016/S0749-8063(98)70117-3. PMid:9486330

Woo SL, Livesay GA, Engle C. Biomechanics of the human anterior cruciate ligament. ACL structure and role in knee motion. Orthopaedic Review. 1992; 21(7):835-42. PMid:1501921.

Woo SLY, Wu C, Dede O, Vercillo F, Noorani S. Biomechanics and anterior cruciate ligament reconstruction. Journal of Orthopaedic Surgery and Research. 2006; 1(1):2. http://dx.doi.org/10.1186/1749-799X-1-2. PMid:17150122
5889fbec5d01231a018b4861 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections