Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.0647
Research on Biomedical Engineering
Original Article

Conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees

Silva Júnior, Wilson Carlos da; Oliveira, Marco Aurélio Vinchi de; Bonvent, Jean-Jacques

Downloads: 1
Views: 841

Abstract

Introduction: Modern transfemoral knee prostheses are designed to offer comfort and self‑confi dence to amputees. These prostheses are mainly based upon either a passive concept, with a damping system, or an active computational intelligent design to control knee motion during the swing phase. In Brazil, most lower extremity amputees are unable to afford modern prostheses due to their high cost. In this work, we present the conception, design and development of a low-cost intelligent prosthesis for one-sided transfemoral amputees. Methods: The concept of the prosthesis is based on a control system with sensors for loads, which are installed on the amputee’s preserved leg and used as a mirror for the movement of the prosthesis. Mechanical strength analysis, using the Finite Element Method, electromechanical tests for the sensors and actuators and verifi cation of data acquisition, signal conditioning and data transferring to the knee prosthesis were performed. Results: The laboratory tests performed showed the feasibility of the proposed design. The electromechanical concept that was used enabled a controlled activation of the knee prosthesis by the two load cells located on the shoe sole of the preserved leg. Conclusions: The electromechanical design concept and the resulting knee prosthesis show promising results concerning prosthesis activation during walking tests, thereby showing the feasibility of a reduced manufacturing cost compared to the modern prostheses available on the market.

Keywords

Rehabilitation, Transfemoral amputees, Intelligent prostheses.

References

Aaron RK, Herr HM, Ciombor DM, Hochberg LR, Donoghue JP, Briant CL, Morgan JR, Ehrlich MG. Horizons in prosthesis development for the restoration of limb function. The Journal of the American Academy of Orthopaedic Surgeons 2006; 14(10):S198-204. PMid:17003199.

Bar A, Ishai G, Meretsky P, Koren Y. Adaptive microcomputer control of an artificial knee in level walking. Journal of Biomedical Engineering 1983; 5(2):145-50. http://dx.doi.org/10.1016/0141-5425(83)90034-1. PMid:6855215

Brodtkorb TH, Henriksson M, Johannesen-Munk K, Thidell F. Cost-effectiveness of C-leg compared with nonmicroprocessor-controlled knees: a modeling approach. Archives of Physical Medicine and Rehabilitation 2008; 89(1):24-30. http://dx.doi.org/10.1016/j.apmr.2007.07.049. PMid:18164326

Buckley JG, Spence WD, Solomonidis SE. Energy cost of walking: comparison of “intelligent prosthesis” with conventional mechanism. Archives of Physical Medicine and Rehabilitation 1997; 78(3):330-3. http://dx.doi.org/10.1016/S0003-9993(97)90044-7. PMid:9084360

Datta D, Heller B, Howitt J. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control. Clinical Rehabilitation 2005; 19(4):398-403. http://dx.doi.org/10.1191/0269215505cr805oa. PMid:15929508

Datta D, Howitt J. Conventional versus microchip controlled pneumatic swing phase control for trans-femoral amputees: user’s verdict. Prosthetics and Orthotics International 1998; 22(2):129-35. PMid:9747997.

Eichler HG, Kong SX, Gerth WC, Mavros P, Jönsson B. Use of cost-effectiveness analysis in health-care resource allocation decision-making: how are cost-effectiveness thresholds expected to emerge? Value in Health 2004; 7(5):518-28. http://dx.doi.org/10.1111/j.1524-4733.2004.75003.x. PMid:15367247

Flowers WC, Mann RW. An electrohydraulic kneetorque controller for a prosthesis simulator. Journal of Biomechanical Engineering 1977; 99(1):3-8. http://dx.doi.org/10.1115/1.3426266. PMid:23720163

Grimes DL, Flowers WC, Donath M. Feasibility of an active control scheme for above knee prostheses. Journal of Biomechanical Engineering 1977; 99(4):215-21. http://dx.doi.org/10.1115/1.3426293.

Herr H, Wilkenfeld A. User-adaptive control of a magnetorheological prosthetic knee. The Industrial Robot 2003; 30(1):42-55. http://dx.doi.org/10.1108/01439910310457706.

Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. American Journal of Physical Medicine & Rehabilitation 2005; 84(8):563-75. http://dx.doi.org/10.1097/01.phm.0000174665.74933.0b. PMid:16034225

Joshi D, Singh R, Ribeiro R, Srivastava S, Singh U, Anand S. Development of echo control strategy for AK prosthesis: an embedded system approach. Systems in Medicine and Biology (ICSMB). In: 2010 International Conference; 2010 Dec 16-18; Kharagpur. IEEE; 2010. p. 143-7.

Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research 1990; 8(3):383-92. http://dx.doi.org/10.1002/jor.1100080310. PMid:2324857

Kahle JT, Highsmith MJ, Hubbard SL. Comparison of nonmicroprocessor knee mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. Journal of Rehabilitation Research and Development 2008; 45(1):1-14. http://dx.doi.org/10.1682/JRRD.2007.04.0054. PMid:18566922

Kapti AO, Yucenur MS. Design and control of an active artificial knee joint. Mechanism and Machine Theory 2006; 41(12):1477-85. http://dx.doi.org/10.1016/j.mechmachtheory.2006.01.017.

Kljajić M, Krajnik J. The use of ground reaction measuring shoes in gait evaluation. Clinical Physics and Physiological Measurement 1987; 8(2):133-42. http://dx.doi.org/10.1088/0143-0815/8/2/004. PMid:3595081

Laferrier JZ, Gailey R. Advances in lower-limb prosthetic technology. Physical Medicine and Rehabilitation Clinics of North America 2010; 21(1):87-110. http://dx.doi.org/10.1016/j.pmr.2009.08.003. PMid:19951780

Liedtke C, Fokkenrood SA, Menger JT, van der Kooij H, Veltink PH. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces. Gait & Posture 2007; 26(1):39-47. http://dx.doi.org/10.1016/j.gaitpost.2006.07.017. PMid:17010612

Martinez-Villalpando EC, Herr H. Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. Journal of Rehabilitation Research and Development 2009; 46(3):361-73. http://dx.doi.org/10.1682/JRRD.2008.09.0131. PMid:19675988

Moss SE, Klein R, Klein BE. The prevalence and incidence of lower extremity amputation in a diabetic population. Archives of Internal Medicine 1992; 152(3):610-6. http://dx.doi.org/10.1001/archinte.1992.00400150120022. PMid:1546925

Norton RL. Machine design: an integrated approach. 2. ed. Porto Alegre: Bookman; 2004.

Paul JP. Loads action in the human femur in walking and some resultant stresses. Experimental Mechanics 1971; 11(3):121-5. http://dx.doi.org/10.1007/BF02328646.

Popović D, Oğuztöreli MN, Stein RB. Optimal control for an above-knee prosthesis with two degrees of freedom. Biomechanics. 1995; 28(1):89-98. http://dx.doi.org/10.1016/0021-9290(95)80010-7. PMid:7852445

Popović D, Stein RB, Oğuztöreli N, Lebiedowska M, Jonić S. Optimal control of walking with functional electrical stimulation: a computer simulation study. IEEE Transactions on Rehabilitation Engineering 1999; 7(1):69-79. http://dx.doi.org/10.1109/86.750554. PMid:10188609

Popović D, Tomovic R, Tepavac D, Schwirtlich L. Control aspects of active above knee prosthesis. International Journal of Man-Machine Studies 1991; 35(6):751-67. http://dx.doi.org/10.1016/S0020-7373(05)80159-2.

Schmalz T, Blumentritt S, Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait & Posture 2002; 16(3):255-63. http://dx.doi.org/10.1016/S0966-6362(02)00008-5. PMid:12443950

Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. The International Journal of Robotics Research 2008; 27(2):263-73. http://dx.doi.org/10.1177/0278364907084588. PMid:19898683

Taylor MB, Clark E, Offord EA, Baxter C. A comparison of energy expenditure by a high level trans-femoral amputee using the Intelligent Prosthesis and conventionally damped prosthetic limbs. Prosthetics and Orthotics International 1996; 20(2):116-21. PMid:8876005.

Trautner C, Haastert B, Giani G, Berger M. Incidence of lower limb amputations and diabetes. Diabetes Care 1996; 19(9):1006-9. http://dx.doi.org/10.2337/diacare.19.9.1006. PMid:8875099

Vallery H, Burgkart R, Hartmann C, Mitternacht J, Riener R, Buss M. Complementary limb motion estimation for the control of active knee prostheses. Biomedizinische Technik. 2011; 56(1):45-51. http://dx.doi.org/10.1515/bmt.2010.057. PMid:21303189

Wearing SC, Urry S, Smeathers JE, Battistutta D. A comparison of gait initiation and termination methods for obtaining plantar foot pressures. Gait & Posture 1999; 10(3):255-63. http://dx.doi.org/10.1016/S0966-6362(99)00039-9. PMid:10567758
5889fbec5d01231a018b4862 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections