Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.0643
Research on Biomedical Engineering
Original Article

A novel method for EMG decomposition based on matched fi lters

Siqueira Júnior, Ailton Luiz Dias; Soares, Alcimar Barbosa

Downloads: 0
Views: 931

Abstract

Introduction: Decomposition of electromyography (EMG) signals into the constituent motor unit action potentials (MUAPs) can allow for deeper insights into the underlying processes associated with the neuromuscular system. The vast majority of the methods for EMG decomposition found in the literature depend on complex algorithms and specifi c instrumentation. As an attempt to contribute to solving these issues, we propose a method based on a bank of matched fi lters for the decomposition of EMG signals. Methods: Four main units comprise our method: a bank of matched fi lters, a peak detector, a motor unit classifi er and an overlapping resolution module. The system’s performance was evaluated with simulated and real EMG data. Classifi cation accuracy was measured by comparing the responses of the system with known data from the simulator and with the annotations of a human expert. Results: The results show that decomposition of non-overlapping MUAPs can be achieved with up to 99% accuracy for signals with up to 10 active motor units and a signal-to-noise ratio (SNR) of 10 dB. For overlapping MUAPs with up to 10 motor units per signal and a SNR of 20 dB, the technique allows for correct classifi cation of approximately 71% of the MUAPs. The method is capable of processing, decomposing and classifying a 50 ms window of data in less than 5 ms using a standard desktop computer. Conclusion: This article contributes to the ongoing research on EMG decomposition by describing a novel technique capable of delivering high rates of success by means of a fast algorithm, suggesting its possible use in future real-time embedded applications, such as myoelectric prostheses control and biofeedback systems.

Keywords

EMG decomposition, MUAPs classifi cation, Matched fi lters.

References

Andrade A, Nasuto S, Kyberd P, Sweeney-Reed C, Van Kanijn F. EMG signal filtering based on Empirical Mode Decomposition. Biomedical Signal Processing and Control. 2006; 1(1):44-55. http://dx.doi.org/10.1016/j.bspc.2006.03.003.

Andrade A, Nasuto S, Kyberd P. An automatic system for clustering and visualization of motor unit action potentials based on generative topographic mapping. 3rd IEE International Seminar on Medical Applications of Signal Processing (Ref No 2005-1119). 2005 Nov 3-4. IET; 2005. 125-30.

Andrade AO, Nasuto SJ, Kyberd P. Extraction of motor unit action potentials from electromyographic signals through generative topographic mapping. Journal of the Franklin Institute. 2007; 344(3-4):154-79. http://dx.doi.org/10.1016/j.jfranklin.2006.10.006.

Barboi AC, Barkhaus PE. Electrodiagnostic testing in neuromuscular disorders. Neurologic Clinics. 2004; 22(3):619-41, vi. http://dx.doi.org/10.1016/j.ncl.2004.03.007. PMid:15207878

Christodoulou C, Pattichis C. A new technique for the classification and decomposition of EMG signals. Proceedings of the IEEE International Conference on Neural Networks. 1995 Nov/Dec; Perth. IEEE; 1995; 5. p. 2303-5.

De Luca CJ, Adam A, Wotiz R, Gilmore LD, Nawab SH. Decomposition of surface EMG signals. Journal of Neurophysiology. 2006; 96(3):1646-57. http://dx.doi.org/10.1152/jn.00009.2006. PMid:16899649

De Luca CJ, Hostage EC. Relationship between firing rate and recruitment threshold of motoneurons in voluntary isometric contractions. Journal of Neurophysiology. 2010; 104(2):1034-46. http://dx.doi.org/10.1152/jn.01018.2009. PMid:20554838

Fang J, Agarwal GC, Shahani BT. Decomposition of multiunit electromyographic signals. IEEE Transactions on Bio-Medical Engineering. 1999; 46(6):685-97. http://dx.doi.org/10.1109/10.764945. PMid:10356875

Florestal JR, Mathieu PA, Malanda A. Automated decomposition of intramuscular electromyographic signals. IEEE Transactions on Bio-Medical Engineering. 2006; 53(5):832-9. http://dx.doi.org/10.1109/TBME.2005.863893. PMid:16686405

Florestal JRF, Mathieu PAP, McGill KCK. Automatic decomposition of multichannel intramuscular EMG signals. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2009; 19(1):1-9. http://dx.doi.org/10.1016/j.jelekin.2007.04.001. PMid:17513128

Glaser V, Holobar A, Zazula D. Real-time motor unit identification from high-density surface EMG. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society. 2013; 21(6):949-58. http://dx.doi.org/10.1109/TNSRE.2013.2247631. PMid:23475379

Han JJ, Carter GT, Weiss MD, Shekar C, Kornegay JN. Using electromyography to assess function in humans and animal models of muscular dystrophy. Physical Medicine and Rehabilitation Clinics of North America. 2005; 16(4):981-97, x. http://dx.doi.org/10.1016/j.pmr.2005.08.001. PMid:16214055

Hogrel JY. EMGLAB: A forum for sharing software, data, and information related to EMG decomposition. Online dataset R011. 2014. [cited: 30 july 2014]. Available at: http://www.emglab.net.

Holobar A, Farina D, Gazzoni M, Merletti R, Zazula D. Estimating motor unit discharge patterns from high-density surface electromyogram. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2009; 120(3):551-62. http://dx.doi.org/10.1016/j.clinph.2008.10.160. PMid:19208498

Kleine BU, Boekestein WA, Arts IM, Zwarts MJ, Schelhaas HJ, Stegeman DF. Fasciculations and their F-response revisited: high-density surface EMG in ALS and benign fasciculations. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2012; 123(2):399-405. http://dx.doi.org/10.1016/j.clinph.2011.06.032. PMid:21820354

Lathi BP, Ding Z. Modern digital and analog communication systems. 4th ed. New York: Oxford University Press USA; 2009.

LeFever RS, De Luca CJ. A procedure for decomposing the myoelectric signal into its constituent action potentials — Part I: technique, theory, and implementation. IEEE Transactions on Bio-Medical Engineering. 1982; 29(3):149-57. http://dx.doi.org/10.1109/TBME.1982.324881. PMid:7084948

Mambrito B, De Luca CJ. A technique for the detection, decomposition and analysis of the EMG signal. Electroencephalography and Clinical Neurophysiology. 1984; 58(2):175-88. http://dx.doi.org/10.1016/0013-4694(84)90031-2. PMid:6204844

Marateb HR, Muceli S, McGill KC, Merletti R, Farina D. Robust decomposition of single-channel intramuscular EMG signals at low force levels. Journal of Neural Engineering. 2011; 8(6):066015. http://dx.doi.org/10.1088/1741-2560/8/6/066015. PMid:22063475

Masters MR, Smith RJ, Soares AB, Thakor NV. Towards better understanding and reducing the effect of limb position on myoelectric upper-limb prostheses. EMBC 2014: Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2014 Aug 26-30; Chicago. 2014. p. 2577-80.

McGill KC, Cummins KL, Dorfman LJ. Automatic decomposition of the clinical electromyogram. IEEE Transactions on Bio-Medical Engineering. 1985; 32(7):470-7. http://dx.doi.org/10.1109/TBME.1985.325562. PMid:3839488

McGill KC, Marateb HR. Rigorous a posteriori assessment of accuracy in EMG decomposition. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society. 2011; 19(1):54-63. http://dx.doi.org/10.1109/TNSRE.2010.2056390. PMid:20639182

Nawab SH, Wotiz RP, De Luca CJ. Decomposition of indwelling EMG signals. Journal of Applied Physiology. 2008; 105(2):700-10. http://dx.doi.org/10.1152/japplphysiol.00170.2007. PMid:18483170

Parsaei H, Stashuk DW, Rasheed S, Farkas C, Hamilton-Wright A. Intramuscular EMG signal decomposition. Critical Reviews in Biomedical Engineering. 2010; 38(5):435-65. http://dx.doi.org/10.1615/CritRevBiomedEng.v38.i5.20. PMid:21175408

Parsaei H, Stashuk DW. Adaptive motor unit potential train validation using MUP shape information. Medical Engineering & Physics 2011; 33(5):581-9. http://dx.doi.org/10.1016/j.medengphy.2010.12.012. PMid:21269867

Parsaei H, Stashuk DW. EMG signal decomposition using motor unit potential train validity. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society. 2013; 21(2):265-74. http://dx.doi.org/10.1109/TNSRE.2012.2218287. PMid:23033332

Pino LJ, Stashuk DW, Boe SG, Doherty TJ. Motor unit potential characterization using “pattern discovery”. Medical Engineering & Physics. 2008; 30(5):563-73. http://dx.doi.org/10.1016/j.medengphy.2007.06.005. PMid:17697793

Rasheed S, Stashuk D, Kamel M. A software package for interactive motor unit potential classification using fuzzy k-NN classifier. Computer Methods and Programs in Biomedicine. 2008; 89(1):56-71. http://dx.doi.org/10.1016/j.cmpb.2007.10.006. PMid:18054118

Ren X, Hu X, Wang Z, Yan Z. MUAP extraction and classification based on wavelet transform and ICA for EMG decomposition. Medical & Biological Engineering & Computing. 2006; 44(5):371-82. http://dx.doi.org/10.1007/s11517-006-0051-3. PMid:16937179

Sá AAR, Soares AB, Andrade AO, Nasuto S. Decomposition of surface electromyographic signal using Hidden Markov Model. Journal of Health Science. 2014; 2:28-40.

Simon AM, Hargrove LJ, Lock BA, Kuiken TA. Target Achievement Control Test: evaluating real-time myoelectric pattern-recognition control of multifunctional upperlimb prostheses. Journal of Rehabilitation Research and Development. 2011; 48(6):619-27. http://dx.doi.org/10.1682/JRRD.2010.08.0149. PMid:21938650

Stashuk D. EMG signal decomposition: how can it be accomplished and used? Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2001; 11(3):151-73. http://dx.doi.org/10.1016/S1050-6411(00)00050-X. PMid:11335147

Studer RM, de Figueiredo RJP, Moschytz GS. An algorithm for sequential signal estimation and system identification for EMG signals. IEEE Transactions on Bio-Medical Engineering. 1984; 31(3):285-95. http://dx.doi.org/10.1109/TBME.1984.325267. PMid:6546925

Turin G. An introduction to matched filters. I.R.E. Transactions on Information Theory. 1960; 6(3):311-29. http://dx.doi.org/10.1109/TIT.1960.1057571.

Winslow J, Dididze M, Thomas CK. Automatic classification of motor unit potentials in surface EMG recorded from thenar muscles paralyzed by spinal cord injury. Journal of Neuroscience Methods. 2009; 185(1):165-77. http://dx.doi.org/10.1016/j.jneumeth.2009.09.012. PMid:19761794

Xu Z, Xiao S, Chi Z. ART2 neural network for surface EMG decomposition. Neural Computing & Applications. 2001; 10(1):29-38. http://dx.doi.org/10.1007/s005210170015.

Zhou P, Barkhaus PE, Zhang X, Rymer WZ. Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy. Journal of Neural Engineering. 2011; 8(6):066010. http://dx.doi.org/10.1088/1741-2560/8/6/066010. PMid:22049095

Zijdewind I, Thomas CK. Firing patterns of spontaneously active motor units in spinal cord-injured subjects. The Journal of Physiology. 2012; 590(Pt 7):1683-97. http://dx.doi.org/10.1113/jphysiol.2011.220103. PMid:22310313
5889fbeb5d01231a018b4860 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections