Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.04917
Research on Biomedical Engineering
Original Article

Compensation technique for environmental and light source power variations applied in a polymer optical fiber curvature sensor for wearable devices

Arnaldo Gomes Leal-Junior; Anselmo Frizera; Maria José Pontes

Downloads: 0
Views: 736

Abstract

Abstract: Introduction: Polymer optical fibers (POF) are lightweight, present high elastic strain limits, fracture toughness, flexibility in bend, and are not influenced by electromagnetic fields. These characteristics enable the application of POF as curvature sensor and can overcome the limitations of the conventional technologies, especially for wearable and soft robotics devices. Nevertheless, POF based curvature sensors can suffer from environmental and light source power deviations. This paper presents a compensation technique for the environmental and light source power deviations in a POF curvature sensor.

Methods: The curvature sensor was submitted to variations of temperature, humidity and light source power to characterize the sensor response and evaluate the proposed compensation technique. In addition, tests with the simultaneous variation of the angle and light source power variation were performed.

Results: Results show that temperature and humidity effects do not lead to significative errors on the sensor measurement for wearable devices application, where a hardware-based compact and portable compensation technique of the light source deviation is applied. Moreover, the sensor with the compensation technique developed is compared with a potentiometer for dynamic measurements and the root-mean-square error of about 1° is obtained, which is lower than sensors based on similar operation principle presented in the literature and some commercially available devices.

Conclusions: The compensation technique proposed was able to compensate power deviations applied and resulted in a sensor with low errors with the additional advantages of compactness and low-cost, which enable its application as wearable sensors and on the instrumentation of wearable robots.

Keywords

Optical fiber sensors, Wearable devices, Angle measurement

References

Antunes PF, Varum H, Andre PS. Intensity-encoded polymer optical fiber accelerometer. IEEE Sens J. 2013; 13(5):1716-20. http://dx.doi.org/10.1109/JSEN.2013.2242463.

Bilro L, Oliveira JG, Pinto JL, Nogueira RN. A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor. Meas Sci Technol. 2011; 22(4):45801. http://dx.doi.org/10.1088/0957-0233/22/4/045801.

Bilro L, Alberto N, Pinto JL, Nogueira R. Optical sensors based on plastic fibers. Sensors (Basel). 2012; 12(9):12184-207. PMid:23112707. http://dx.doi.org/10.3390/s120912184.

Bolink SAAN, Naisas H, Senden R, Essers H, Heyligers IC, Meijer K, Grimm B. Validity of an inertial measurement unit to assess pelvic orientation angles during gait, sit-stand transfers and step-up transfers: comparison with an optoelectronic motion capture system. Med Eng Phys. 2016; 38(3):225-31. PMid:26711470. http://dx.doi.org/10.1016/j.medengphy.2015.11.009.

Braidot AA, Cifuentes CC, Frizera A No, Frisoli M, Santiago A. ZigBee wearable densor development for upper limb robotics rehabilitation. IEEE Lat Am Trans. 2013; 11(1):408-13. http://dx.doi.org/10.1109/TLA.2013.6502838.

Coulthard JT, Treen TT, Oates AR, Lanovaz JL. Evaluation of an inertial sensor system for analysis of timed-up-and-go under dual-task demands. Gait Posture. 2015; 41(4):882-7. PMid:25827680. http://dx.doi.org/10.1016/j.gaitpost.2015.03.009.

Dejnabadi H, Jolles BM, Aminian K. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Trans Biomed Eng. 2005; 52(8):1478-84. PMid:16119244. http://dx.doi.org/10.1109/TBME.2005.851475.

Donno M, Palange E, Di Nicola F, Bucci G, Ciancetta F. A new flexible optical fiber goniometer for dynamic angular measurements: Application to human joint movement monitoring. Instrumentation. 2008; 57(8):1614-20. http://dx.doi.org/10.1109/TIM.2008.925336.

Dunne LE, Walsh P, Hermann S, Smyth B, Caulfield B. Wearable monitoring of seated spinal posture. IEEE Trans Biomed Circuits Syst. 2008; 2(2):97-105. PMid:23852756. http://dx.doi.org/10.1109/TBCAS.2008.927246.

El-Gohary M, McNames J. Shoulder and elbow joint angle tracking with inertial sensors. IEEE Trans Biomed Eng. 2012; 59(9):2635-41. PMid:22911538. http://dx.doi.org/10.1109/TBME.2012.2208750.

Holland D, Abah C, Velasco-Enriquez M, Herman M, Bennett GJ, Vela EA, Walsh CJ. The soft robotics toolkit. IEEE Robot Autom Mag. 2017; 24(1):57-64. http://dx.doi.org/10.1109/MRA.2016.2639067.

Kirtley K. Clinical gait analysis: theory and practice. Washington: Churchill Livingstone; 2006.

Leal-Junior AG, Frizera-Neto A, Pontes MJ. Analytical model for a polymer optical fiber under dynamic bending. Opt Laser Technol. 2017a; 93:92-8. http://dx.doi.org/10.1016/j.optlastec.2017.02.009.

Leal-Junior AG, Frizera-Neto A, Pontes MJ, Botelho TR. Hysteresis compensation technique applied to polymer optical fiber curvature sensor for lower limb exoskeletons. Meas Sci Technol. 2017b; 28(12):1-9. http://dx.doi.org/10.1088/1361-6501/aa946f.

Leal-Junior AG, Frizera-Neto A, Pontes MJ. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors. Opt Laser Technol. 2018; 100:272-81. http://dx.doi.org/10.1016/j.optlastec.2017.10.006.

Liu R, Zhuang F, Yanzheng Z, Qixin C, Shuguo W. Operation principle of a bend enhanced curvature optical fiber sensor. IEEE Int Conf Intell Robot Syst. 2006; 1966-71.

Marques CA, Peng GD, Webb DJ. Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings. Opt Express. 2015; 23(5):6058-72. PMid:25836830. http://dx.doi.org/10.1364/OE.23.006058.

Moraleda AT, García CV, Zaballa JZ, Arrue J. A temperature sensor based on a polymer optical fiber macro-bend. Sensors (Basel). 2013; 13(10):13076-89. PMid:24077323. http://dx.doi.org/10.3390/s131013076.

Moreno JC, Bueno L, Pons JL. Wearable robot technologies. In: Pons JL, editor. Wearable robots: biomechatronic exoskeletons. Hoboken: John Wiley & Sons; 2008. p. 165-99.

Peters K. Polymer optical fiber sensors - a review. Smart Mater Struct. 2011; 20(1):13002. http://dx.doi.org/10.1088/0964-1726/20/1/013002.

Piriyaprasarth P, Morris ME. Psychometric properties of measurement tools for quantifying knee joint position and movement: A systematic review. Knee. 2007; 14(1):2-8. PMid:17140797. http://dx.doi.org/10.1016/j.knee.2006.10.006.

Rhea MR, Kenn JG, Peterson MD, Massey D, Simão R, Marin PJ, et al. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Hum Mov. 2016; 17(1):43-9.

Rodriguez-Cobo L, Lomer M, Cobo A, Lopez-Higuera J. Optical fiber strain sensor with extended dynamic range based on specklegrams. Sens Actuators A Phys. 2013; 203:341-5. http://dx.doi.org/10.1016/j.sna.2013.09.006.

Stupar DZ, Bajic JS, Manojlovic LM, Slankamenac MP, Joza V, Zivanov MB. Wearable low-cost system for human joint movements monitoring based on fiber-optic curvature sensor. IEEE Sens J. 2012; 12(12):3424-31. http://dx.doi.org/10.1109/JSEN.2012.2212883.

Tong K, Granat MH. A practical gait analysis system using gyroscopes. Med Eng Phys. 1999; 21(2):87-94. PMid:10426508. http://dx.doi.org/10.1016/S1350-4533(99)00030-2.

Vallan A, Casalicchio ML, Olivero M, Perrone G. Assessment of a dual-wavelength compensation technique for displacement sensors using plastic optical fibers. IEEE Trans Instrum Meas. 2012; 61(5):1377-83. http://dx.doi.org/10.1109/TIM.2011.2180975.

Vargas-Valencia LS, Elias A, Rocon E, Bastos-Filho T, Frizera A. An IMU-to-body alignment method applied to human gait analysis. Sensors (Basel). 2016; 16(12):2090. PMid:27973406. http://dx.doi.org/10.3390/s16122090.

Villa-Parra AC, Broche L, Delisle-Rodriguez D, Sagaró R, Bastos T, Frizera-Neto A. Design of active orthosis for a robotic gait rehabilitation system. Front Mech Eng. 2015; 10(3):242-54. http://dx.doi.org/10.1007/s11465-015-0350-1.

Wang PT, King CE, Do AH, Nenadic Z. A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories. Med Eng Phys. 2011; 33(5):546-52. PMid:21247789. http://dx.doi.org/10.1016/j.medengphy.2010.12.008.

Williams JM, Haq I, Lee RY. Dynamic measurement of lumbar curvature using fibre-optic sensors. Med Eng Phys. 2010; 32(9):1043-9. PMid:20678954. http://dx.doi.org/10.1016/j.medengphy.2010.07.005.

Yuan L. Automatic-compensated two-dimensional fiber-optic sensor. Opt Fiber Technol. 1998; 4(4):490-8. http://dx.doi.org/10.1006/ofte.1998.0266.

Zawawi MA, O’Keeffe S, Lewis E. Plastic optical fibre sensor for spine bending monitoring with power fluctuation compensation. Sensors (Basel). 2013; 13(11):14466-83. PMid:24233073. http://dx.doi.org/10.3390/s131114466.

Zhang H, Feng L, Hou Y, Su S, Liu W, Liu J, Xiong J. Optical fiber liquid level sensor based on macro-bending coupling. Opt Fiber Technol. 2015; 24:135-9. http://dx.doi.org/10.1016/j.yofte.2015.05.012.
 

5ad4e02b0e8825d77048954c rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections