Research on Biomedical Engineering
Research on Biomedical Engineering
Original Article

Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus

Cesar, Reinaldo; Leivas, Tomaz Puga; Pereira, Cesar Augusto Martins; Boffa, Ricardo Simionato; Guarniero, Roberto; Reiff, Rodrigo Bezerra de Menezes; Netto, Antônio Mandeli; Fortulan, Carlos Alberto; Rollo, João Manuel Domingos de Almeida

Downloads: 0
Views: 284


Introduction: Biomechanical assessment of trabecular bone microarchitecture contributes to the evaluation of fractures risk associated with osteoporosis and plays a crucial role in planning preventive strategies. One of the most widely clinical technics used for osteoporosis diagnosis by health professionals is bone dual-energy X-ray absorptiometry (DEXA). However, doubts about its accuracy motivate the introduction of congruent technical analysis such as calcaneal ultrasonometry (Quantitative Ultrasonometry - QUS). Methods: Correlations between Bone Quality Index (BQI), determined by calcaneal ultrasonometry of thirty (30) individuals classified as normal, osteopenic and osteoporotic, and elastic modulus (E) and ultimate compressive strength (UCS) from axial compression tests of ninety (90) proof bodies from human vertebrae trabecular bone, which were extracted from cadavers in the twelfth thoracic region (T12), first and fourth lumbar (L1 and L4). Results: Analysis of variance (ANOVA) showed significant differences for E (p = 0.001), for UCS (p = 0.0001) and BQI. Spearman’s rank correlation coefficient (rho) between BQI and E (r = 0.499) and BQI and UCS (r = 0.508) were moderate. Discussion: Calcaneal ultrasonometry technique allowed a moderate estimate of bone mechanical strength and fracture risk associated with osteoporosis in human vertebrae.    


Osteoporosis, Calcaneal ultrasonometry, Trabecular bone, Human vertebra, Axial compression test, Correlation.    


Adams JE. Advances in bone imaging for osteoporosis. ‎Nature Reviews. Endocrinology. 2013; 9(1):28-42. PMid:23232496. 

American Society for Testing and Materials – ASTM International. West Conshohocken: ASTM [cited 2016 Jan. 1]. Available from: 

Cauley JA, Blackwell T, Zmuda JM, Fullman RL, Ensrud KE, Stone KL, Barrett-Connor E, Orwoll ES. Correlates of trabecular and cortical volumetric bone mineral density at the femoral neck and lumbar spine: the osteoporotic fractures in men study (MrOS). Journal of Bone and Mineral Research. 2010; 25(9):19-58. PMid:20572023. 

Cesar R, Boffa RS, Fachine LT, Leivas TP, Silva AMH, Pereira CAM, Reiff RBM, Rollo JMDA. Evaluation of trabecular microarchitecture of normal osteoporotic and osteopenic human vertebrae. Procedia Engineering. 2013; 59:6-15. 

Doblaré M, Garcia JM, Gomez MJ. Modeling bone tissue fracture and healing: a review. Engineering Fracture Mechanics. 2004; 71(13-14):1809-40. 

Ebeling PR. Osteoporosis in men. The New England Journal of Medicine. 2008; 358(14):1474-82. PMid:18385499. 

Fontelles MJ, Simões MG, Almeida JC, Fontelles RGS. Metodologia da pesquisa: diretrizes para o cálculo do tamanho da amostra. Revista Paraense de Medicina. 2010; 24:57-64. 

Guglielmi G, Terlizzi F. Quantitative ultrasound in the assessment of osteoporosis. European Journal of Radiology. 2009; 71(3):425-31. PMid:19651483. 

Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, Kanis JA. Osteoporosis in the European Union: medical management, epidemiology and economic burden. Archives of Osteoporosis. 2013; 8(1-2):136. PMid:24113837. 

Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis International. 2013; 24(1):23-57. PMid:23079689. 

Liu JM, Ma LY, Bi YF, Xu Y, Zhao HY, Sun LH, Tao B, Li XY, Wang WQ, Ning G. A population-based study examining calcaneus quantitative ultrasound and its optimal cut-points to discriminate osteoporotic fractures among 9352 Chinese women and men. The Journal of Clinical Endocrinology and Metabolism. 2012; 97(3):800-9. PMid:22170722. 

National Osteoporosis Foundation – NOF. Clinician’s Guide to Prevention and Treatment of Osteoporosis [Internet]. Washington: NOF; 2014 [cited 2016 Jan. 1]. Available from: 

Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: Standardization of nomenclature, symbols, and units. Journal of Bone and Mineral Research. 1987; 2(6):595-610. PMid:3455637. 

Raum K, Grimal Q, Varga P, Barkmann R, Glüer CC, Laugier P. Ultrasound to assess bone quality. Current Osteoporosis Reports. 2014; 12(2):154-62. PMid:24652476. 

Rodrigues MES. Análise do risco de fratura óssea por ultrasonometria e ensaio mecânico de compressão [dissertation]. São Carlos: University of São Paulo; 2004. 

Roux JP, Wegrzy J, Arlot ME, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML. Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study. Journal of Bone and Mineral Research. 2010; 25(2):356-61. PMid:19653808. 

Shenoy S, Chawla JK, Sandhu JS. Multisite quantitative ultrasound: it’s comparison with dual energy X-ray absorptiometry in the diagnosis of osteoporosis. Journal of Orthopaedics and Allied Sciences. 2014; 2(2):40-4. 

Society of Obstetricians and Gynaecologists of Canada – SOGC. Osteoporosis in menopause. Journal of Obstetrics and Gynaecology Canada. 2014: 36(9 eSuppl C):S1-15. 

Suzuki N. The acute osteoporotic vertebral compression fracture [thesis]. Göteborg: University of Gothenburg; 2009. 

Watts NB, Geusens P, Barton IP, Felsenberg D. Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. Journal of Bone and Mineral Research. 2005; 20(12):2097-104. PMid:16294263. 

59e9f3f00e882565779aaad6 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections