Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.04115
Research on Biomedical Engineering
Original Article

Reliability of biceps femoris and semitendinosus muscle architecture measurements obtained with ultrasonography

Viviane Bastos de Oliveira; Simone Peres Carneiro; Liliam Fernandes de Oliveira

Downloads: 1
Views: 769

Abstract

Introduction: Currently, little attention is given to the muscle architecture reliability studies of the hamstring using a robust statistical. Our purpose was to determine the reliability of ultrasound measurements of muscle thickness, fascicle length and pennation angle of the biceps femoris and semitendinosus muscles, including heteroskedasticity and internal consistency analyses.

Methods: Two images of biceps femoris and semitendinosus at 50% of the thigh length were acquired from 21 volunteers, in two visits. The parameters were measured three times in each image, and for each muscle. The reliability was analyzed by the intraclass correlation coefficient (ICC) and Cronbach’s alpha (αCronbach). The relative standard error of the measurements (%SEM) were calculated and Bland-Altman plots were generated.

Results: All parameters presented excellent ICC for the three repeated measurements (ICC from 0.93 ‒ 0.99) and moderate to excellent reliability intraday (ICC from 0.70 ‒ 0.95) for both muscles. The present study indicates that ultrasound is a reliable tool to estimate the biceps femoris fascicle length (ICC = 0.97, αCronbach = 0.98, %SEM = 7.86) and semitendinosus (ICC = 0.90, αCronbach = 0.95, %SEM = 7.55), as well as the biceps femoris muscle thickness (ICC = 0.89, αCronbach = 0.94, %SEM = 10.23) and semitendinosus muscle thickness (ICC = 0.87, αCronbach = 0.93, %SEM = 1.35). At last, biceps femoris pennation angle (ICC = 0.93, αCronbach = 0.96 and %SEM = 4.36) and semitendinosus (ICC = 0.96, αCronbach = 0.98 and %SEM = 4.25) also had good repeatability.

Conclusion: Ultrasonography show good repeatability in estimating of muscle architecture parameters.

Keywords

Reliability, Hamstring, Ultrasound, Muscle architecture

References

Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine. 1998; 26(4):217-38. PMid:9820922. http://dx.doi.org/10.2165/00007256-199826040-00002.

Blackburn J, Pamukoff D. Geometric and architectural contributions to hamstring musculotendinous stiffness. Clinical Biomechanics. 2014; 29(1):105-10. PMid:24220042. http://dx.doi.org/10.1016/j.clinbiomech.2013.10.011.

Blazevich AJ, Gill ND, Zhou S. Intra‐and intermuscular variation in human quadriceps femoris architecture assessed in vivo. Journal of Anatomy. 2006; 209(3):289-310. PMid:16928199. http://dx.doi.org/10.1111/j.1469-7580.2006.00619.x.

Chleboun GS, France R, Crill MT, Braddock HK, Howell JN. In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells, Tissues, Organs. 2001; 169(4):401-9. PMid:11490120. http://dx.doi.org/10.1159/000047908.

Gomes PS, Meirelles CD, Leite SP, Montenegro CA. Confiabilidade da medida de espessuras musculares pela ultrassonografia. Revista Brasileira de Medicina do Esporte. 2010; 16(1):41-5. http://dx.doi.org/10.1590/S1517-86922010000100008.

Hopkins WG. Measures of reliability in sports medicine and science. Sports Medicine. 2000; 30(1):1-15. PMid:10907753. http://dx.doi.org/10.2165/00007256-200030010-00001.

Kellis E, Galanis N, Kapetanos G, Natsis K. Architectural differences between the hamstring muscles. Journal of Electromyography and Kinesiology. 2012; 22(4):520-6. PMid:22564790. http://dx.doi.org/10.1016/j.jelekin.2012.03.012.

Kellis E, Galanis N, Natsis K, Kapetanos G. Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. Journal of Biomechanics. 2009; 42(15):2549-54. PMid:19646698. http://dx.doi.org/10.1016/j.jbiomech.2009.07.011.

Kellis E, Galanis N, Natsis K, Kapetanos G. In vivo and in vitro examination of the tendinous inscription of the human semitendinosus muscle. Cells, Tissues, Organs. 2011; 195(4):365-76. PMid:21828998. http://dx.doi.org/10.1159/000327574.

Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine. 2016; 15(2):155-63. PMid:27330520. http://dx.doi.org/10.1016/j.jcm.2016.02.012.

Legerlotz K, Smith HK, Hing WA. Variation and reliability of ultrasonographic quantification of the architecture of the medial gastrocnemius muscle in young children. Clinical Physiology and Functional Imaging. 2010; 30(3):198-205. http://dx.doi.org/10.1111/j.1475-097X.2010.00925.x. PMid:20184623.

Lieber RL. Skeletal muscle anatomy. In: Lieber RL. Skeletal muscle, structure, function, and plasticity: the physiological basis of rehabilitation. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2010. p. 26-41.

Lima KM, Matta TT, Oliveira LF. Reliability of the rectus femoris muscle cross‐sectional area measurements by ultrasonography. Clinical Physiology and Functional Imaging. 2012; 32(3):221-6. PMid:22487157. http://dx.doi.org/10.1111/j.1475-097X.2011.01115.x.

Martins NS, Peixinho CC, Oliveira LF. Confiabilidade de medidas de arquitetura muscular do tríceps sural por ultrassonografia de imagem. Revista Brasileira de Cineantropometria & Desempenho Humano. 2012; 14(2):212-20.

Noorkoiv M, Nosaka K, Blazevich AJ. Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. European Journal of Applied Physiology. 2010; 109(4):631-9. PMid:20191287. http://dx.doi.org/10.1007/s00421-010-1402-1.

Potier T, Alexander C, Seynnes O. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. European Journal of Applied Physiology. 2009; 105(6):939-44. PMid:19271232. http://dx.doi.org/10.1007/s00421-008-0980-7.

Shrout P, Fleiss J. Intraclass correlations: uses in assessing rater reliability. Psychological Bulletin. 1979; 86(2):420-8. PMid:18839484. http://dx.doi.org/10.1037/0033-2909.86.2.420.

Timmins RG, Shield A, Williams M, Lorenzen C, Opar D. Biceps Femoris Long-Head Architecture: a reliability and retrospective injury study. Medicine and Science in Sports and Exercise. 2015; 47(5):905-13. http://dx.doi.org/10.1249/MSS.0000000000000507.

Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate? Clinical Orthopaedics and Related Research. 2009; 467(4):1074-82. http://dx.doi.org/10.1007/s11999-008-0594-8.

Woodley S, Mercer S. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005; 179(3):125-41. http://dx.doi.org/10.1159/000085004.
 

589892db0e88256e0cb92415 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections