Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.03615
Research on Biomedical Engineering
Original Article

Influence of subcutaneous fat on mechanomyographic signals at three levels of voluntary effort

Eduardo Mendonça Scheeren; Lindomar Mineiro; Eduardo Borba Neves; Eddy Krueger; Guilherme Nunes Nogueira Neto; Percy Nohama

Downloads: 3
Views: 950

Abstract

Abstract: Introduction: This study aims to assess the influence of different skinfold thicknesses (ST) and their relation to the attenuation of the mechanomyographic (MMG) signal at different force levels (maximal voluntary contraction – MVC, 40% of MVC and 70% of MVC) of the rectus femoris muscle.

Methods: Fifteen volunteers were divided in two groups: ST lower than 10mm (G<10) (8 participants) and ST higher than 35mm (G>35) (7 participants). Student t tests were employed to investigate differences between G<10 and G>35 regarding MMG analysis parameters (acceleration root mean square – aRMS, zero crossing – ZC, and median frequency – MDF), for the X, Y and Z axes, as well as for the modulus of these three axes.

Results: We found that thicker layers of body fat act as attenuator filters for the MMG signal [MDFMVC: X (p = 0.005), Z (p = 0.003); MDF70%MVC: X (p = 0.034); ZCMVC: Z (p = 0.037), modulus (p = 0.005); ZC70%MVC: Z (p = 0.047)]. We found significant correlation between ST values and aRMS in three levels, in the Yaxis (p = 0.591), for the group G<10. For the modulus, the aRMS value showed correlation with ST values for group G>35 in 40%MVC (R2 = 0.610), and 70%MVC (R2 = 0.592). The MDF parameter showed correlation with ST values only in the Yaxis in 70%MVC (R2 = 0.700) for G>35.

Conclusions: We observed MMG signal attenuation in at least one of the parameters analyzed for each level of the rectus femoris muscle force, indicating that MMG signals are significantly attenuated with increasing thickness of the subcutaneous fat layer.

Keywords

Mechanomyography, Skinfold, Signal attenuation, Level of force

References

Akataki K, Mita K, Itoh K, Suzuki N, Watakabe M. Acoustic and electrical activities during voluntary isometric contraction of biceps brachii muscles in patients with spastic cerebral palsy. Muscle & Nerve. 1996; 19(10):1252-7. PMid:8808650. http://dx.doi.org/10.1002/(SICI)1097-4598(199610)19:10<1252::AID-MUS2>3.0.CO;2-D.

Akataki K, Mita K, Watakabe M, Itoh K. Mechanomyogram and force relationship during voluntary isometric ramp contractions of the biceps brachii muscle. European Journal of Applied Physiology. 2001; 84(1-2):19-25. PMid:11394249. http://dx.doi.org/10.1007/s004210000321.

Akataki K, Mita K, Watakabe M, Itoh K. Mechanomyographic responses during voluntary ramp contractions of the human first dorsal interosseous muscle. European Journal of Applied Physiology. 2003; 89(6):520-5. PMid:12712352. http://dx.doi.org/10.1007/s00421-003-0835-1.

Akataki K, Mita K, Watakabe M. Electromyographic and mechanomyographic estimation of motor unit activation strategy in voluntary force production. Electromyography and Clinical Neurophysiology. 2004; 44(8):489-96. PMid:15646006.

Alves N, Chau T. Stationarity distributions of mechanomyogram signals from isometric contractions of extrinsic hand muscles during functional grasping. Journal of Electromyography and Kinesiology. 2008; 18(3):509-15. PMid:17276085. http://dx.doi.org/10.1016/j.jelekin.2006.11.010.

Baars H, Jöllenbeck T, Humburg H, Schröder J. Surface-electromyography: skin and subcutaneous fat tissue attenuate amplitude and frequency parameters. Portland: ISBS; 2007. p. 1-4.

Baptista RR, Scheeren EM, Macintosh BR, Vaz MA. Low-frequency fatigue at maximal and submaximal muscle contractions. Brazilian Journal of Medical and Biological Research. 2009; 42(4):380-5. PMid:19330267. http://dx.doi.org/10.1590/S0100-879X2009000400011.

Barkhaus PE, Nandedkar SD. Recording characteristics of the surface EMG electrodes. Muscle & Nerve. 1994; 17(11):1317-23. PMid:7935554. http://dx.doi.org/10.1002/mus.880171111.

Barry DT, Cole NM. Muscle sounds are emitted at the resonant frequencies of skeletal muscle. IEEE Transactions on Biomedical Engineering. 1990; 37(5):525-31. PMid:2345010. http://dx.doi.org/10.1109/10.55644.

Bassani E, Candotti C, Pasini M, Melo M, La Torre M. Avaliação da ativação neuromuscular em indivíduos com escoliose através da eletromiografia de superfície. Brazilian Journal of Physical Therapy. 2008; 12(1):13-9. http://dx.doi.org/10.1590/S1413-35552008000100004.

Beck TW, Housh TJ, Johnson GO, Weir JP, Cramer JT, Coburn JW, Malek MH. Mechanomyographic and electromyographic time and frequency domain responses during submaximal to maximal isokinetic muscle actions of the biceps brachii. European Journal of Applied Physiology. 2004; 92(3):352-9. PMid:15106005. http://dx.doi.org/10.1007/s00421-004-1110-9.

Blemker SS, Delp SL. Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. Journal of Biomechanics. 2006; 39(8):1383-91. PMid:15972213. http://dx.doi.org/10.1016/j.jbiomech.2005.04.012.

Cochrane KC, Housh TJ, Jenkins ND, Bergstrom HC, Smith CM, Hill EC, Johnson GO, Schmidt RJ, Cramer JT. Electromyographic, mechanomyographic, and metabolic responses during cycle ergometry at a constant rating of perceived exertion. Applied Physiology, Nutrition, and Metabolism. 2015; 40(11):1178-85. PMid:26481288. http://dx.doi.org/10.1139/apnm-2015-0144.

Cooper MA, Herda TJ, Vardiman JP, Gallagher PM, Fry AC. Relationships between the mechanomyographic amplitude patterns of response and concentric isokinetic fatiguing tasks of the leg extensors. Physiological Measurement. 2013; 34(10):1293-301. PMid:24021893. http://dx.doi.org/10.1088/0967-3334/34/10/1293.

Cooper MA, Herda TJ, Vardiman JP, Gallagher PM, Fry AC. Relationships between skinfold thickness and electromyographic and mechanomyographic amplitude recorded during voluntary and non-voluntary muscle actions. Journal of Electromyography and Kinesiology. 2014; 24(2):207-13. PMid:24444832. http://dx.doi.org/10.1016/j.jelekin.2013.12.005.

Cooper MA, Herda TJ. Muscle‐related differences in mechanomyography: force relationships are model‐dependent. Muscle & Nerve. 2014; 49(2):202-8. PMid:23649718. http://dx.doi.org/10.1002/mus.23896.

Correa CS, Silva BGC, Alberton CL, Wilhelm EN, Moraes AC, Lima CS, Pinto RS. Analysis of maximal isometric force and EMG signal in lower limb exercise. Revista Brasileira de Cineantropometria & Desempenho Humano. 2011; 13(6):429-35.

Cramer JT, Housh TJ, Johnson GO, Ebersole KT, Perry SR, Bull AJ. Mechanomyographic amplitude and mean power output during maximal, concentric, isokinetic muscle actions. Muscle & Nerve. 2000; 23(12):1826-31. PMid:11102905. http://dx.doi.org/10.1002/1097-4598(200012)23:12<1826::AID-MUS5>3.0.CO;2-7.

Dalton PA, Stokes MJ. Frequency of acoustic myography during isometric contraction of fresh and fatigued muscle and during dynamic contractions. Muscle & Nerve. 1993; 16(3):255-61. PMid:8446123. http://dx.doi.org/10.1002/mus.880160303.

Gonçalves M, Barbosa FSS. Análise de parâmetros de força e resistência dos músculos eretores da espinha lombar durante a realização de exercício isométrico em diferentes níveis de esforço. Revista Brasileira de Medicina do Esporte. 2005; 11(2):109-14. http://dx.doi.org/10.1590/S1517-86922005000200003.

Herda TJ, Cooper MA. Muscle-related differences in mechanomyography frequency-force relationships are model dependent. Medical & Biological Engineering & Computing. 2015; 53(8):1-9. PMid:25805064. http://dx.doi.org/10.1007/s11517-015-1261-3.

Herda TJ, Housh TJ, Fry AC, Weir JP, Schilling BK, Ryan ED, Cramer JT. A noninvasive, log-transform method for fiber type discrimination using mechanomyography. Journal of Electromyography and Kinesiology. 2010; 20(5):787-94. PMid:20172740. http://dx.doi.org/10.1016/j.jelekin.2010.01.004.

Herda TJ, Walter AA, Costa PB, Ryan ED, Stout JR, Cramer JT. Differences in the log-transformed electromyographic–force relationships of the plantar flexors between high-and moderate-activated subjects. Journal of Electromyography and Kinesiology. 2011; 21(5):841-6. PMid:21737308. http://dx.doi.org/10.1016/j.jelekin.2011.05.008.

Hu X, Tong K, Li L. The mechanomyography of persons after stroke during isometric voluntary contractions. Journal of Electromyography and Kinesiology. 2007; 17(4):473-83. PMid:16603386. http://dx.doi.org/10.1016/j.jelekin.2006.01.015.

Jaskólska A, Brzenczek W, Kisiel-Sajewicz K, Kawczyński A, Marusiak J, Jaskólski A. The effect of skinfold on frequency of human muscle mechanomyogram. Journal of Electromyography and Kinesiology. 2003; 14(2):217-25. PMid:14962774. http://dx.doi.org/10.1016/j.jelekin.2003.08.001.

Kemp B, Olivan J. European data format ‘plus’(EDF+), an EDF alike standard format for the exchange of physiological data. Clinical Neurophysiology. 2003; 114(9):1755-61. PMid:12948806. http://dx.doi.org/10.1016/S1388-2457(03)00123-8.

Krueger E, Scheeren EM, Nogueira-Neto GN, Button VLSN, Nohama P. Correlation between spectral and temporal mechanomyography features during functional electrical stimulation. Research on Biomedical Engineering. 2016; 32(1):85-91. http://dx.doi.org/10.1590/2446-4740.02315.

Krueger E, Scheeren EM, Nogueira-Neto GN, Neves EB, Button VLS, Nohama P. Influence of skinfold thickness in mechanomyography features. In: World Congress on Medical Physics and Biomedical Engineering; 2013 May 26-31; Beijing, China. Heidelberg: Springer; 2013. p. 2030-3.

Madeleine P, Bajaj P, Søgaard K, Arendt-Nielsen L. Mechanomyography and electromyography force relationships during concentric, isometric and eccentric contractions. Journal of Electromyography and Kinesiology. 2001; 11(2):113-21. PMid:11228424. http://dx.doi.org/10.1016/S1050-6411(00)00044-4.

Malek MH, Coburn JW. The utility of electromyography and mechanomyography for assessing neuromuscular function: a noninvasive approach. Physical Medicine and Rehabilitation Clinics of North America. 2012; 23(1):23-32, ix. PMid:22239871. http://dx.doi.org/10.1016/j.pmr.2011.11.005.

Marusiak J, Jaskólska A, Kisiel-Sajewicz K, Yue GH, Jaskólski A. EMG and MMG activities of agonist and antagonist muscles in Parkinson’s disease patients during absolute submaximal load holding. Journal of Electromyography and Kinesiology. 2009; 19(5):903-14. PMid:18456512. http://dx.doi.org/10.1016/j.jelekin.2008.03.003.

Matta TT, Perini TA, Oliveira GL, Ornellas JS, Louzada AA, Magalhães J, Imbiriba LA, Garcia MAC. Interpretação dos mecanismos de gradação da força muscular através da acelerometria. Revista Brasileira de Medicina do Esporte. 2005; 11(5):306-10. http://dx.doi.org/10.1590/S1517-86922005000500012.

Neering I, Quesenberry L, Morris V, Taylor S. Nonuniform volume changes during muscle contraction. Biophysical Journal. 1991; 59(4):926-33. PMid:2065192. http://dx.doi.org/10.1016/S0006-3495(91)82306-2.

Nogueira-Neto GN, Scheeren EM, Krueger E, Nohama P, Button VLSN. The influence of window length analysis on the time and frequency domain of mechanomyographic and electromyographic signals of submaximal fatiguing contractions. Open Journal of Biophysics. 2013; 3(3):178-90. http://dx.doi.org/10.4236/ojbiphy.2013.33021.

Nogueira-Neto GN, Scheeren EM, Nohama P, Button VLS. Triaxial mechanomyography of the Biceps Brachii muscle during sustained submaximal isometric contractions. In: World Congress on Medical Physics and Biomedical Engineering; 2009 Sept 7-12; Munich, Germany. Heidelberg: Spring; 2010. p. 1502-5.

Orizio C, Gobbo M, Diemont B, Esposito F, Veicsteinas A. The surface mechanomyogram as a tool to describe the influence of fatigue on biceps brachii motor unit activation strategy: historical basis and novel evidence. European Journal of Applied Physiology. 2003; 90(3-4):326-36. PMid:12923643. http://dx.doi.org/10.1007/s00421-003-0924-1.

Orizio C, Perini R, Veicsteinas A. Muscular sound and force relationship during isometric contraction in man. European Journal of Applied Physiology. 1989; 58(5):528-33. PMid:2759079. http://dx.doi.org/10.1007/BF02330708.

Orizio C. Muscle sound: bases for the introduction of a mechanomyographic signal in muscle studies. Critical Reviews in Biomedical Engineering. 1992; 21(3):201-43. PMid:8243092.

Perry SR, Housh TJ, Weir JP, Johnson GO, Bull AJ, Ebersole KT. Mean power frequency and amplitude of the mechanomyographic and electromyographic signals during incremental cycle ergometry. Journal of Electromyography and Kinesiology. 2001; 11(4):299-305. PMid:11532601. http://dx.doi.org/10.1016/S1050-6411(00)00057-2.

Polato D, Carvalho MC, Garcia MAC. Efeitos de dois parâmetros antropométricos no comportamento do sinal mecanomiográfico em testes de força muscular. Revista Brasileira de Medicina do Esporte. 2008; 14(3):221-6. http://dx.doi.org/10.1590/S1517-86922008000300012.

Sarlabous L, Torres A, Fiz JA, Jané R. Evidence towards improved estimation of respiratory muscle effort from diaphragm mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values. PLoS One. 2014; 9(2):e88902. PMid:24586436. http://dx.doi.org/10.1371/journal.pone.0088902.

Scheeren EM, Krueger-Beck E, Nogueira-Neto GN, Nohama P, Button V. Wrist movement characterization by mechanomyography technique. Journal of Medical and Biological Engineering. 2010; 30(6):373-80. http://dx.doi.org/10.5405/jmbe.757.

Seki K, Taniguchi Y, Narusawa M. Alterations in contractile properties of human skeletal muscle induced by joint immobilization. The Journal of Physiology. 2001; 530(3):521-32. PMid:11158281. http://dx.doi.org/10.1111/j.1469-7793.2001.0521k.x.

Shin I, Ahn S, Choi E, Ryu J, Park S, Son J, Kim Y. Fatigue analysis of the quadriceps femoris muscle based on mechanomyography. International Journal of Precision Engineering and Manufacturing. 2016; 17(4):473-8. http://dx.doi.org/10.1007/s12541-016-0059-z.

Tarata MT. Mechanomyography versus electromyography, in monitoring the muscular fatigue. Biomedical Engineering Online. 2003; 2(3):3. PMid:12625837. http://dx.doi.org/10.1186/1475-925X-2-3.

Trevino MA, Herda TJ. Mechanomyographic mean power frequency during an isometric trapezoid muscle action at multiple contraction intensities. Physiological Measurement. 2015; 36(7):1383-97. PMid:26015456. http://dx.doi.org/10.1088/0967-3334/36/7/1383.

Vaz MA, Herzog W. A mecanomiografia como técnica não-invasiva para o estudo da função muscular. Movimento. 1999; 5(10):15-20.

Yoshitake Y, Shinohara M, Ue H, Moritani T. Characteristics of surface mechanomyogram are dependent on development of fusion of motor units in humans. Journal of Applied Physiology. 2002; 93(5):1744-52. PMid:12381762. http://dx.doi.org/10.1152/japplphysiol.00008.2002.

Youn W, Kim J. Estimation of elbow flexion force during isometric muscle contraction from mechanomyography and electromyography. Medical & Biological Engineering & Computing. 2010; 48(11):1149-57. PMid:20524072. http://dx.doi.org/10.1007/s11517-010-0641-y.

Zuniga JM, Housh TJ, Camic CL, Hendrix CR, Schmidt RJ, Mielke M, Johnson GO. A mechanomyographic fatigue threshold test for cycling. International Journal of Sports Medicine. 2010; 31(09):636-43. PMid:20589588. http://dx.doi.org/10.1055/s-0030-1255112.
 

589212f70e88250857bbfdd1 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections