Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.03215
Research on Biomedical Engineering
Original Article

Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves

Peres, André Salles Cunha; Lemos, Tenysson Will de; Barros, Allan Kardec Duailibe; Baffa Filho, Oswaldo; Araújo, Dráulio Barraos

Downloads: 0
Views: 822

Abstract

Introduction: Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods: In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps) were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results: Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion: The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number); thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster. 

Keywords

Cluster algorithm, Hierarchical, k-means, Self-organizing maps, False-positives, fMRI.

References

Baker FB, Hubert JH. Measuring the power of hierarchical cluster analysis. Journal of the American Statistical Association. 1975; 70(349):31-8. http://dx.doi.org/10.1080/01621459.1975.10480256. 

Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magnetic Resonance in Medicine. 1993; 30(2):161-73. PMid:8366797. http://dx.doi.org/10.1002/mrm.1910300204. 

Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR. Functional mapping of the human visual-cortex by magnetic-resonace-imaging. Science. 1991; 254(5032):716-9. PMid:1948051. http://dx.doi.org/10.1126/science.1948051. 

Cabella BCT, Sturzbecher MJ, Araujo DB, Neves UPC. Generalized relative entropy in functional magnetic resonance imaging. Physica A. Statistical Mechanics and Its Applications. 2009; 388(1):41-50. http://dx.doi.org/10.1016/j.physa.2008.09.029. 

Carter CS, Lesh TA, Barch DM, Forman SD, Cohen JD, Fitzgerald M, et al. Thresholds, power, and sample sizes in clinical neuroimaging. Biol Psychiatry Cogn Neurosc Neuroimaging. 2016; 1(2):99-100. http://dx.doi.org/10.1016/j.bpsc.2016.01.005. 

Cox RW, Jesmanowicz A. Real-time 3D image registration for functional MRI. Magnetic Resonance in Medicine. 1999; 42(6):1014-8. PMid:10571921. http://dx.doi.org/10.1002/(SICI)1522-2594(199912)42:6<1014::AID-MRM4>3.0.CO;2-F. 

Dimitriadou E, Barth M, Windischberger C, Hornik K, Moser E. A quantitative comparison of functional MRI cluster analysis. Artificial Intelligence in Medicine. 2004; 31(1):57-71. PMid:15182847. http://dx.doi.org/10.1016/j.artmed.2004.01.010. 

Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F. Independent component analysis of fMRI group studies by self-organizing clustering. NeuroImage. 2005; 25(1):193-205. PMid:15734355. http://dx.doi.org/10.1016/j.neuroimage.2004.10.042. 

Estombelo-Montesco CA, Sturzbecher M Jr, Barros AKD, Araujo DB. Detection of auditory cortex activity by fMRI using a dependent component analysis. Advances in Experimental Medicine and Biology. 2010; 657:135-45. PMid:20020345. http://dx.doi.org/10.1007/978-0-387-79100-5_7. 

Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006; 27(8):861-74. http://dx.doi.org/10.1016/j.patrec.2005.10.010. 

Filzmoser P, Baumgartner R, Moser E. A hierarchical clustering method for analyzing functional MR images. Journal of Magnetic Resonance Imaging. 1999; 17(6):817-26. PMid:10402588. http://dx.doi.org/10.1016/S0730-725X(99)00014-4. 

Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine. 1995; 33(5):636-47. PMid:7596267. http://dx.doi.org/10.1002/mrm.1910330508. 

Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD. Detecting activations in PET and fMRI: levels of inference and power. NeuroImage. 1996; 4(3):223-35. PMid:9345513. http://dx.doi.org/10.1006/nimg.1996.0074. 

Goodenough DJ, Rossmann K, Lusted LB. Radiographic applications of receiver operating characteristic (ROC) curves. Radiology. 1974; 110(1):89-95. PMid:4808546. http://dx.doi.org/10.1148/110.1.89. 

Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine. 1995; 34(6):910-4. PMid:8598820. http://dx.doi.org/10.1002/mrm.1910340618. 

Hartigan JA, Wong MA. Algorithm AS 136: a k-means clustering algorithm. Journal of the Royal Statistical Society. Series A (General). 1979; 28:100-8. 

Heller R, Stanley D, Yekutieli D, Rubin N, Benjamini Y. Cluster-based analysis of fMRI data. NeuroImage. 2006; 33(2):599-608. PMid:16952467. http://dx.doi.org/10.1016/j.neuroimage.2006.04.233. 

Jain AK. Data clustering: 50 years beyond k-means. Pattern Recognition Letters. 2010; 31(8):651-66. http://dx.doi.org/10.1016/j.patrec.2009.09.011. 

Johnson SC. Hierarchical clustering schemes. Psychometrika. 1967; 32(3):241-54. PMid:5234703. http://dx.doi.org/10.1007/BF02289588. 

Kinnunen T, Sidoroff I, Tuononen M, Franti P. Comparison of clustering methods: a case study of text-independent speaker modeling. Pattern Recognition Letters. 2011; 32(13):1604-17. http://dx.doi.org/10.1016/j.patrec.2011.06.023. 

Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America. 1992; 89(12):5675-9. PMid:1608978. http://dx.doi.org/10.1073/pnas.89.12.5675. 

Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics (Oxford, England). 2008; 24(5):719-20. PMid:18024473. http://dx.doi.org/10.1093/bioinformatics/btm563. 

Liao W, Chen H, Yang Q, Lei X. Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering. IEEE Transactions on Medical Imaging. 2008; 27(10):1472-83. PMid:18815099. http://dx.doi.org/10.1109/TMI.2008.923987. 

Lieberman MD, Cunningham WA. Type I and type II error concerns in fMRI research: re-balancing the scale. Social Cognitive and Affective Neuroscience. 2009; 4(4):423-8. PMid:20035017. http://dx.doi.org/10.1093/scan/nsp052. 

Logan BR, Rowe DB. An evaluation of thresholding techniques in fMRI analysis. NeuroImage. 2004; 22(1):95-108. PMid:15110000. http://dx.doi.org/10.1016/j.neuroimage.2003.12.047. 

MacQueen JCN. Some methods for classification and analysis of multivariate observations. In: Proceedoings of the 5th Berkeley Symposium on Mathematical Statistics and Probability; 1967; Berkeley, USA. Berkeley: University of California Press; 1967. p. 281-97. 

McAvoy MP, Ollinger JM, Buckner RL. Cluster size thresholds for assessment of significant activation in fMRI. NeuroImage. 2001; 13(6):S198. http://dx.doi.org/10.1016/S1053-8119(01)91541-1. 

Mezer A, Yovel Y, Pasternak O, Gorfine T, Assaf Y. Cluster analysis of resting-state fMRI time series. NeuroImage. 2009; 45(4):1117-25. PMid:19146962. http://dx.doi.org/10.1016/j.neuroimage.2008.12.015. 

Murino L, Angelini C, De Feis I, Raiconi G, Tagliaferri R. Beyond classical consensus clustering: the least squares approach to multiple solutions. Pattern Recognition Letters. 2011; 32(12):1604-12. http://dx.doi.org/10.1016/j.patrec.2011.05.003. 

Naldi MC, Campello RJGB. Evolutionary k-means for distributed data sets. Neurocomputing. 2014; 127:30-42. http://dx.doi.org/10.1016/j.neucom.2013.05.046. 

Nandy RR, Cordes D. Novel ROC-type method for testing the efficiency of multivariate statistical methods in fMRI. Magnetic Resonance in Medicine. 2003; 49(6):1152-62. PMid:12768594. http://dx.doi.org/10.1002/mrm.10469. 

Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America. 1992; 89(13):5951-5. PMid:1631079. http://dx.doi.org/10.1073/pnas.89.13.5951. 

Paulson OB, Hasselbalch SG, Rostrup E, Knudsen GM, Pelligrino D. Cerebral blood flow response to functional activation. Journal of Cerebral Blood Flow and Metabolism. 2009; 30(1):2-14. PMid:19738630. http://dx.doi.org/10.1038/jcbfm.2009.188. 

Salimi-Khorshidi G, Smith SM, Nichols TE. Adjusting the effect of nonstationarity in cluster-based and TFCE inference. NeuroImage. 2011; 54(3):2006-19. PMid:20955803. http://dx.doi.org/10.1016/j.neuroimage.2010.09.088. 

Shahapurkar SS, Sundareshan MK. Comparison of self-organizing map with K-means hierarchical clustering for bioinformatics applications. In Procedings of the 2004 IEEE Intenartion Joint Conference on Neural Networks: IJCNN; 2004; Budapest, Hungary. IEEE; 2004. vol. 2, p. 1221-6. 

Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009; 44(1):83-98. PMid:18501637. http://dx.doi.org/10.1016/j.neuroimage.2008.03.061. 

Sorenson JA, Wang X. ROC methods for evaluation of fMRI techniques. Magnetic Resonance in Medicine. 1996; 36(5):737-44. PMid:8916024. http://dx.doi.org/10.1002/mrm.1910360512. 

Sturzbecher M Jr, Tedeschi W, Cabella BCT, Baffa O, Neves UPC, Araujo DB. Non-extensive entropy and the extraction of BOLD spatial information in event-related functional MRI. Physics in Medicine and Biology. 2009; 54(1):161-74. PMid:19075356. http://dx.doi.org/10.1088/0031-9155/54/1/011. 

Tepper M, Muse P, Almansa A, Mejail M. Automatically finding clusters in normalized cuts. Pattern Recognition. 2011; 44(7):1372-86. http://dx.doi.org/10.1016/j.patcog.2011.01.003. 

Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. NeuroImage. 2005; 26(1):243-50. PMid:15862224. http://dx.doi.org/10.1016/j.neuroimage.2005.01.007. 

Venkataraman A, Van Dijk KRA, Buckner RL, Golland P. Exploring functional connectivity in fMRI via clustering. In Proceedings of the IEEE International Conference on Acoustic Speech Signal Processing; 2009; Taipei, Taiwan. IEEE; 2009. p. 441-4. 

Wilkin GA, Huang X. A practical comparison of two k-means clustering algorithms. BMC Bioinformatics. 2008; 9(6 Suppl 6):S19. PMid:18541054. http://dx.doi.org/10.1186/1471-2105-9-S6-S19. 

Woo CW, Krishnan A, Wager TD. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. NeuroImage. 2014; 91:412-9. PMid:24412399. http://dx.doi.org/10.1016/j.neuroimage.2013.12.058.

59e9ed700e88259e729aaad8 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections