Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.03116
Research on Biomedical Engineering
Original Article

A magneto-motive ultrasound platform designed for pre-clinical and clinical applications

Diego Ronaldo Thomaz Sampaio; Felipe Wilker Grillo; Alexandre Colello Bruno; Theo Zeferino Pavan; Antonio Adilton Oliveira Carneiro

Downloads: 3
Views: 883

Abstract

Abstract: Introduction: Magneto-motive ultrasound (MMUS) combines magnetism and ultrasound (US) to detect magnetic nanoparticles in soft tissues. One type of MMUS called shear-wave dispersion magneto-motive ultrasound (SDMMUS) analyzes magnetically induced shear waves (SW) to quantify the elasticity and viscosity of the medium. The lack of an established presets or protocols for pre-clinical and clinical studies currently limits the use of MMUS techniques in the clinical setting.

Methods: This paper proposes a platform to acquire, process, and analyze MMUS and SDMMUS data integrated with a clinical ultrasound equipment. For this purpose, we developed an easy-to-use graphical user interface, written in C++/Qt4, to create an MMUS pulse sequence and collect the ultrasonic data. We designed a graphic interface written in MATLAB to process, display, and analyze the MMUS images. To exemplify how useful the platform is, we conducted two experiments, namely (i) MMUS imaging to detect magnetic particles in the stomach of a rat, and (ii) SDMMUS to estimate the viscoelasticity of a tissue-mimicking phantom containing a spherical target of ferrite.

Results: The developed software proved to be an easy-to-use platform to automate the acquisition of MMUS/SDMMUS data and image processing. In an in vivo experiment, the MMUS technique detected an area of 6.32 ± 1.32 mm2 where magnetic particles were heterogeneously distributed in the stomach of the rat. The SDMMUS method gave elasticity and viscosity values of 5.05 ± 0.18 kPa and 2.01 ± 0.09 Pa.s, respectively, for a tissue-mimicking phantom.

Conclusion: Implementation of an MMUS platform with addressed presets and protocols provides a step toward the clinical implementation of MMUS imaging equipment. This platform may help to localize magnetic particles and quantify the elasticity and viscosity of soft tissues, paving a way for its use in pre-clinical and clinical studies.

Keywords

Ultrasound, Magneto-motive ultrasound, Shear wave, Elastography, Magnetic nanoparticles

References

Almeida TWJ, Sampaio DRT, Bruno AC, Pavan TZ, Carneiro AAO. Comparison between shear wave dispersion magneto motive ultrasound and transient elastography for measuring tissue-mimicking phantom viscoelasticity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2015; 62(12):2138-45. PMid:26670853. http://dx.doi.org/10.1109/TUFFC.2015.007353.

Almeida TWJ, Sampaio DRT, Pavan TZ, Carneiro AAO. Shear wave Vibro Magneto Acoustography for measuring tissue mimicking phantom elasticity and viscosity. In: 2014 IEEE International Ultrasonics Symposium (IUS); 2014. USA: IEEE; 2014. p. 1097-100. http://doi.org/10.1109/ULTSYM.2014.0269.

Bruno AC, Sampaio DRT, Pavan TZ, Baffa O, Carneiro AAO. A hybrid transducer to evaluate stomach emptying by ultrasound and susceptometric measurements: an in vivo feasibility study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2015; 62(7):1288-94. PMid:26168175. http://dx.doi.org/10.1109/TUFFC.2014.006950.

Cobbold RSC. Foundations of biomedical ultrasound. Oxford: Oxford University Press; 2006.

Colello Bruno A, Baffa O Fo, Carneiro AAO, Oliveira RB. Stomach emptying evaluation by ultrasound and susceptometric measurements with a hybrid transducer. In: 2014 IEEE International Ultrasonics Symposium (IUS); 2014. USA: IEEE; 2014. p. 1869-72. http://doi.org/10.1109/ULTSYM.2014.0464.

Colello Bruno A, Pavan TZ, Baffa O, Oliveira Carneiro AA. A hybrid transducer to magnetically and ultrasonically evaluate magnetic fluids. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2013; 60(9):2004-12. PMid:24658731. http://dx.doi.org/10.1109/TUFFC.2013.2785.

Deffieux T, Montaldo G, Tanter M, Fink M. Shear Wave Spectroscopy for In Vivo Quantification of Human Soft Tissues Visco-Elasticity. IEEE Transactions on Medical Imaging. 2009; 28(3):313-22. PMid:19244004. http://dx.doi.org/10.1109/TMI.2008.925077.

Evertsson M, Kjellman P, Cinthio M, Fredriksson S, in’t Zandt R, Persson H, Jansson T. Multimodal detection of iron oxide nanoparticles in rat lymph nodes using magnetomotive ultrasound imaging and magnetic resonance imaging.. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2014; 61(8):1276-83. PMid:25073135. http://dx.doi.org/10.1109/TUFFC.2014.3034.

Hemmsen MC, Nikolov SI, Pedersen MM, Pihl MJ, Enevoldsen MS, Hansen JM, Jensen JA. Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2012; 59(7):1487-99. PMid:22828844. http://dx.doi.org/10.1109/TUFFC.2012.2349.

Jensen JA, Holten-Lund H, Nilsson RT, Hansen M, Larsen UD, Domsten RP, Tomov BG, Stuart MB, Nikolov SI, Pihl MJ, Yigang Du, Rasmussen JH, Rasmussen MF. SARUS: a synthetic aperture real-time ultrasound system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2013; 60(9):1838-52. PMid:24658717. http://dx.doi.org/10.1109/TUFFC.2013.2770.

Jin Y, Jia C, Huang S-W, O’Donnell M, Gao X. Multifunctional nanoparticles as coupled contrast agents. Nature Communications. 2010; 1(4):41. PMid:20975706. http://dx.doi.org/10.1038/ncomms1042.

Kaczkowski PJ, Daigle RE. The Verasonics ultrasound system as a pedagogic tool in teaching wave propagation, scattering, beamforming, and signal processing concepts in physics and engineering. The Journal of the Acoustical Society of America. 2011; 129(4):2648. http://dx.doi.org/10.1121/1.3588831.

Liu D, Ebbini ES. Real-time 2-D temperature imaging using ultrasound. IEEE Transactions on Biomedical Engineering. 2010; 57(1):12-6. PMid:19884075. http://dx.doi.org/10.1109/TBME.2009.2035103.

McAleavey SA, Rubens DJ, Parker KJ. Doppler ultrasound imaging of magnetically vibrated brachytherapy seeds. IEEE Transactions on Biomedical Engineering. 2003; 50(2):252-5. PMid:12665040. http://dx.doi.org/10.1109/TBME.2002.807644.

Mehrmohammadi M, Oh J, Mallidi S, Emelianov SY. Pulsed magneto-motive ultrasound imaging using ultrasmall magnetic nanoprobes. Molecular Imaging. 2011a; 10(2):102-10. PMid:21439255.

Mehrmohammadi M, Qu M, Ma LL, Romanovicz DK, Johnston KP, Sokolov KV, Emelianov SY. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles. Nanotechnology. 2011b; 22(41):415105. PMid:21926454. http://dx.doi.org/10.1088/0957-4484/22/41/415105.

Mehrmohammadi M, Yoon KY, Qu M, Johnston KP, Emelianov SY. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters. Nanotechnology. 2011c; 22(4):045502. PMid:21157009. http://dx.doi.org/10.1088/0957-4484/22/4/045502.

Oh J, Feldman MD, Kim J, Condit C, Emelianov S, Milner TE. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound. Nanotechnology. 2006; 17(16):4183-90. PMid:21727557. http://dx.doi.org/10.1088/0957-4484/17/16/031.

Oudry J, Chen J, Glaser KJ, Miette V, Sandrin L, Ehman RL. Cross-validation of magnetic resonance elastography and ultrasound-based transient elastography: a preliminary phantom study. Journal of Magnetic Resonance Imaging. 2009; 30(5):1145-50. PMid:19856447. http://dx.doi.org/10.1002/jmri.21929.

Parolai S. Determination of dispersive phase velocities by complex seismic trace analysis of surface waves (CASW). Soil Dynamics and Earthquake Engineering. 2009; 29(3):517-24. http://dx.doi.org/10.1016/j.soildyn.2008.05.008.

Pavan TZ, Sampaio DRT, Carneiro AAO, Covas DT. Ultrasound-based transient elastography using a magnetic excitation. In: 2012 IEEE International Ultrasonics Symposium (IUS); 2012. USA: IEEE; 2012. p. 1846-9. http://doi.org/10.1109/ULTSYM.2012.0463.

Qt. Qt cross-plaform framework [internet]. Santa Clara: Qt; 2016 [cited 2016 Apr 29]. Available from: http://www.qt.io/developers/

Qu M, Mallidi S, Mehrmohammadi M, Truby R, Homan K, Joshi P, Chen YS, Sokolov K, Emelianov S. Magneto-photo-acoustic imaging. Biomedical Optics Express. 2011; 2(2):385-96. PMid:21339883. http://dx.doi.org/10.1364/BOE.2.000385.

Sarvazyan AP, Urban MW, Greenleaf JF. Acoustic waves in medical imaging and diagnostics. Ultrasound in Medicine & Biology. 2013; 39(7):1133-46. PMid:23643056. http://dx.doi.org/10.1016/j.ultrasmedbio.2013.02.006.

Shamdasani V, Bae U, Sikdar S, Yoo YM, Karadayi K, Managuli R, Kim Y. Research interface on a programmable ultrasound scanner. Ultrasonics. 2008; 48(3):159-68. PMid:18234260. http://dx.doi.org/10.1016/j.ultras.2007.11.009.

Urban MW, Chalek C, Kinnick RR, Kinter TM, Haider B, Greenleaf JF, Thomenius KE, Fatemi M. Implementation of vibro-acoustography on a clinical ultrasound system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2011; 58(6):1169-81. PMid:21693399. http://dx.doi.org/10.1109/TUFFC.2011.1927.

Vieira SL, Pavan TZ, Junior JE, Carneiro AAO. Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom. Ultrasound in Medicine & Biology. 2013; 39(12):2477-84. PMid:24035622. http://dx.doi.org/10.1016/j.ultrasmedbio.2013.06.008.

Viola F, Walker WF. A spline-based algorithm for continuous time-delay estimation using sampled data. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2005; 52(1):80-93. PMid:15742564. http://dx.doi.org/10.1109/TUFFC.2005.1397352.

Wilson T, Zagzebski J, Varghese T, Chen Q, Rao M. The Ultrasonix 500RP: a commercial ultrasound research interface. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2006; 53(10):1772-82. PMid:17036786. http://dx.doi.org/10.1109/TUFFC.2006.110.

Zahiri-Azar R, Baghani A, Salcudean SE, Rohling R. 2-D high-frame-rate dynamic elastography using delay compensated and angularly compounded motion vectors: preliminary results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2010; 57(11):2421-36. PMid:21041130. http://dx.doi.org/10.1109/TUFFC.2010.1709.

Zahiri-Azar R, Salcudean SE. Motion estimation in ultrasound images using time domain cross correlation with prior estimates. IEEE Transactions on Biomedical Engineering. 2006; 53(10):1990-2000. PMid:17019863. http://dx.doi.org/10.1109/TBME.2006.881780.

Zhao H, Urban M, Greenleaf J, Chen S. Elasticity and viscosity estimation from shear wave velocity and attenuation: a simulation study. In: 2010 IEEE International Ultrasonics Symposium (IUS); 2010. USA: IEEE; 2010. p. 1604-7. http://doi.org/10.1109/ULTSYM.2010.5935462.
 

589213ea0e8825c059bbfdd2 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections