Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.02317
Research on Biomedical Engineering
Technical Communication

Populational brain models of diffusion tensor imaging for statistical analysis: a complementary information in common space

Senra Filho, Antonio Carlos da Silva; Murta Junior, Luiz Otávio

Downloads: 1
Views: 820

Abstract

Introduction: The search for human brain templates has been progressing in the past decades and in order to understand disease patterns a need for a standard diffusion tensor imaging (DTI) dataset was raised. For this purposes, some DTI templates were developed which assist group analysis studies. In this study, complementary information to the most commonly used DTI template is proposed in order to offer a patient-specific statistical analysis on diffusion-weighted data. Methods: 131 normal subjects were used to reconstruct a population-averaged template. After image pre processing, reconstruction and diagonalization, the eigenvalues and eigenvectors were used to reconstruct the quantitative DTI maps, namely fractional anisotropy (FA), mean diffusivity (MD), relative anisotropy (RA), and radial diffusivity (RD). The mean absolute error (MAE) was calculated using a voxel-wise procedure, which informs the global error regarding the mean intensity value for each quantitative map. Results: the MAE values presented a low MAE estimate (max(MAE) = 0.112), showing a reasonable error measure between our DTI-USP-131 template and the classical DTI-JHU-81 approach, which also shows a statistical equivalence (p<0.05) with the classical DTI template. Hence, the complementary standard deviation (SD) maps for each quantitative DTI map can be added to the classical DTI-JHU-81 template. Conclusion: In this study, variability DTI maps (SD maps) were reconstructed providing the possibility of a voxel-wise statistical analysis in patient-specific approach. Finally, the brain template (DTI-USP-131) described here was made available for research purposes on the web site (http://dx.doi.org/10.17632/br7bhs4h7m.1), being valuable to research and clinical applications.    

Keywords

Keywords: Magnetic resonance imaging, Diffusion Tensor Imaging, Brain templates, Statistical analysis.    

References

Alves GS, Sudo FK, Alves CEO, Ericeira-Valente L, Moreira DM, Engelhardt E, Laks J. Diffusion tensor imaging studies in vascular disease: a review of the literature. Dementia & Neuropsychologia. 2012; 6(3):158-63. http://dx.doi.org/10.1590/S1980-57642012DN06030008. 

Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage. 2016; 125:1063-78. PMid:26481672. http://dx.doi.org/10.1016/j.neuroimage.2015.10.019. 

Berman J. Diffusion MR tractography as a tool for surgical planning. Magnetic Resonance Imaging Clinics of North America. 2009; 17(2):205-14. PMid:19406354. http://dx.doi.org/10.1016/j.mric.2009.02.002. 

Brodmann K. Brodmann’s localisation in the cerebral cortex. Boston: Springer; 2005. https://doi.org/10.1007/b138298. 

Evans AC, Janke AL, Collins DL, Baillet S. Brain templates and atlases. NeuroImage. 2012; 62(2):911-22. PMid:22248580. http://dx.doi.org/10.1016/j.neuroimage.2012.01.024. 

Ganiler O, Oliver A, Diez Y, Freixenet J, Vilanova JC, Beltran B, Ramió-Torrentà L, Rovira A, Lladó X. A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies. Neuroradiology. 2014; 56(5):363-74. PMid:24590302. http://dx.doi.org/10.1007/s00234-014-1343-1. 

Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New Jersey: Wiley; 1999. 

Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PC, Mori S. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. NeuroImage. 2008; 39(1):336-47. PMid:17931890. http://dx.doi.org/10.1016/j.neuroimage.2007.07.053. 

Inglese M, Bester M. Diffusion imaging in multiple sclerosis: research and clinical implications. NMR in Biomedicine. 2010; 23(7):865-72. PMid:20882528. http://dx.doi.org/10.1002/nbm.1515. 

Itagiba VGA, Borges R, Cruz LCH Jr, Furtado AD, Domingues RC, Gasparetto EL. Uso do tensor de difusão na avaliação dos padrões de acometimento da substância branca em pacientes com tumores cerebrais: é uma ferramenta útil para o diagnóstico diferencial? Radiologia Brasileira. 2010; 43(6):362-8. http://dx.doi.org/10.1590/S0100-39842010000600006. 

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012; 62(2):782-90. PMid:21979382. http://dx.doi.org/10.1016/j.neuroimage.2011.09.015. 

Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Medical Image Analysis. 2001; 5(2):143-56. PMid:11516708. http://dx.doi.org/10.1016/S1361-8415(01)00036-6. 

Kim H, Harrison A, Kankirawatana P, Rozzelle C, Blount J, Torgerson C, Knowlton R. Major white matter fiber changes in medically intractable neocortical epilepsy in children: a diffusion tensor imaging study. Epilepsy Research. 2013; 103(2-3):211-20. PMid:22917916. http://dx.doi.org/10.1016/j.eplepsyres.2012.07.017. 

Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang M-C, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage. 2009; 46(3):786-802. PMid:19195496. http://dx.doi.org/10.1016/j.neuroimage.2008.12.037. 

Kubicki M, McCarley R, Westin C-F, Park H-J, Maier S, Kikinis R, Jolesz FA, Shenton ME. A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research. 2007; 41(1-2):15-30. PMid:16023676. http://dx.doi.org/10.1016/j.jpsychires.2005.05.005. 

Mandal PK, Mahajan R, Dinov ID. Structural brain atlases: design, rationale, and applications in normal and pathological cohorts. Journal of Alzheimer’s Disease. 2012; 31(Suppl 3):S169-88. PMid:22647262. 

Miraldi F, Lopes FCR, Costa JVA, Alves-Leon SV, Gasparetto EL. Diffusion tensor magnetic resonance imaging may show abnormalities in the normal-appearing cervical spinal cord from patients with multiple sclerosis. Arquivos de Neuro-Psiquiatria. 2013; 71(9A):580-3. PMid:24141435. http://dx.doi.org/10.1590/0004-282X20130099. 

Mori S, Oishi K, Faria AV. White matter atlases based on diffusion tensor imaging. Current Opinion in Neurology. 2009; 22(4):362-9. PMid:19571751. http://dx.doi.org/10.1097/WCO.0b013e32832d954b. 

Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R, Toga AW, Pike GB, Neto PR, Evans A, Zhang J, Huang H, Miller MI, Zijl P van, Mazziotta J. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage. 2008; 40(2):570-82. PMid:18255316. http://dx.doi.org/10.1016/j.neuroimage.2007.12.035. 

Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, Zijl PC van, Albert M, Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: Application to normal elderly and Alzheimer’s disease participants. NeuroImage. 2009; 46(2):486-99. PMid:19385016. http://dx.doi.org/10.1016/j.neuroimage.2009.01.002. 

Ontaneda D, Sakaie K, Lin J, Wang X, Lowe MJ, Phillips MD, Fox RJ. Identifying the start of multiple sclerosis injury: a Serial DTI study. Journal of Neuroimaging. 2014; 24(6):569-76. PMid:25370339. http://dx.doi.org/10.1111/jon.12082. 

Pujol S, Wells W, Pierpaoli C, Brun C, Gee J, Cheng G, Vemuri B, Commowick O, Prima S, Stamm A, Goubran M, Khan A, Peters T, Neher P, Maier-Hein KH, Shi Y, Tristan-Vega A, Veni G, Whitaker R, Styner M, Westin CF, Gouttard S, Norton I, Chauvin L, Mamata H, Gerig G, Nabavi A, Golby A, Kikinis R. The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. Journal of Neuroimaging. 2015; 25(6):875-82. PMid:26259925. http://dx.doi.org/10.1111/jon.12283. 

Qiu A, Mori S, Miller MI. Diffusion tensor Imaging for understanding brain development in early life. Annual Review of Psychology. 2015; 66(1):853-76. PMid:25559117. http://dx.doi.org/10.1146/annurev-psych-010814-015340. 

Rittner L, Freitas PF, Appenzeller S, Lotufo RA. Automatic DTI-based parcellation of the corpus callosum through the watershed transform. Revista Brasileira de Engenharia Biomédica. 2014; 30(2):132-43. http://dx.doi.org/10.1590/rbeb.2014.012. 

Senra ACS Fo, Murta LO Jr. Populational Diffusion Tensor Imaging Statistical Maps Version 1 [internet]. Mendeley; 2017. [cited 2017 June 08]. Available from: http://dx.doi.org/10.17632/br7bhs4h7m.1 

Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Pasternak O, Rathi Y, Vu MA, Purohit MP, Helmer K, Koerte I, Lin AP, Westin CF, Kikinis R, Kubicki M, Stern RA, Zafonte R. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior. 2012; 6(2):137-92. PMid:22438191. http://dx.doi.org/10.1007/s11682-012-9156-5. 

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006; 31(4):1487-505. PMid:16624579. http://dx.doi.org/10.1016/j.neuroimage.2006.02.024. 

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, Stefano N, Brady JM, Matthews PM. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004; 23(Suppl 1):S208-19. PMid:15501092. http://dx.doi.org/10.1016/j.neuroimage.2004.07.051. 

Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Transactions on Medical Imaging. 2013; 32(7):1153-90. PMid:23739795. http://dx.doi.org/10.1109/TMI.2013.2265603. 

Strotzer M. One century of brain mapping using Brodmann areas. Clinical Neuroradiology. 2009; 19(3):179-86. PMid:19727583. http://dx.doi.org/10.1007/s00062-009-9002-3. 

Talairach J. Co-planar stereotaxic atlas of the human brain: 3-D proportional system: an approach to cerebral imaging. Thieme: New York; 1988. 

Thottakara P, Lazar M, Johnson SC, Alexander AL. Application of Brodmann’s area templates for ROI selection in white matter tractography studies. NeuroImage. 2006; 29(3):868-78. PMid:16243544. http://dx.doi.org/10.1016/j.neuroimage.2005.08.051. 

Zhang H, Awate SP, Das SR, Woo JH, Melhem ER, Gee JC, Yushkevich PA. A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features. Medical Image Analysis. 2010; 14(5):666-73. PMid:20547469. http://dx.doi.org/10.1016/j.media.2010.05.002. 

Zhang S, Peng H, Dawe RJ, Arfanakis K. Enhanced ICBM diffusion tensor template of the human brain. NeuroImage. 2011; 54(2):974-84. PMid:20851772. http://dx.doi.org/10.1016/j.neuroimage.2010.09.008. 

Zilles K, Amunts K. Centenary of Brodmann’s map – conception and fate. Nature Reviews. Neuroscience. 2010; 11(2):139-45. PMid:20046193. http://dx.doi.org/10.1038/nrn2776. 

59ea2a850e88253f0f9aaada rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections