Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.02015
Research on Biomedical Engineering
Original Article

System for open-chest, multidirectional electrical defibrillation

Viana, Marcelo Almeida; Bassani, Rosana Almada; Petrucci, Orlando; Marques, Denilson Antônio; Bassani, José Wilson Magalhães

Downloads: 0
Views: 816

Abstract

Introduction: Cardiomyocytes are more sensitive to stimulatory electrical fields when the latter are applied longitudinally to the cell major axis. In the whole heart, cells have different spatial orientations, which may limit the effectiveness of conventional electrical defibrillation (i.e., shock delivery in a single direction). This article describes the constructive aspects of a portable system for rapidly-switching, multidirectional stimulus delivery, composed of an electrical defibrillator and multielectrode-bearing paddles for direct cardiac defibrillation. Methods: The defibrillator delivers monophasic, truncated monoexponential waveforms with energy up to 7.3 J. Upon selection of the defibrillation modality (unidirectional or multidirectional), shock delivery is triggered through 1 or 3 outputs. In the latter case, triggering is sequentially switched to the outputs, without interval or temporal overlap. Each paddle contains 3 electrodes that define shock pathways spaced by 60°. The system was tested in vivo for reversal of experimentally-induced ventricular fibrillation in healthy swine, using 30- and 20-ms long shocks (N= 4 in each group). Results: The defibrillator delivers identical stimulus waveforms through all outputs in both stimulation modalities. In all animals, successful defibrillation required lower shock energy when 20 ms-long stimuli were applied in 3 directions, compared to a single direction. However, performance was poorer with multidirectional defibrillation for 30 ms-long shocks. Conclusion: The delivery of identical shock waveforms allowed confirmation that multidirectional defibrillation can promote restoration of sinus rhythm with lower shock energy, which may reduce myocardial electrical damage during defibrillation. Nevertheless, increase in shock duration greatly impairs the effectiveness of this defibrillation modality.

Keywords

Cardiac arrhythmia, Ventricular fibrillation, Cardiac defibrillator, Shock duration.

References

Altman DG. Practical statistics for medical research. London: Chapman and Hall; 1991.

American National Standards Institute. Association for the Advancement of Medical Instrumentation. DF2: cardiac defibrillator devices. New York: ANSI; 1996.

Associação Brasileira de Normas Técnicas. NBR IEC 60601-2-4: equipamento eletromédico - Parte 2-4: prescrições particulares para segurança de desfibriladores cardíacos. Rio de Janeiro: ABNT; 2005.

Bassani RA, Lima KA, Gomes PAP, Oliveira PX, Bassani JWM. Combining stimulus direction and waveform for optimization of threshold stimulation of isolated ventricular myocytes. Physiological Measurement. 2006; 27(9):851-63. http://dx.doi.org/10.1088/0967-3334/27/9/008. PMid:16868351.

Chang M, Inoue H, Kallok M, Zipes DP. Double and triple sequential shocks reduce ventricular defibrillation threshold in dogs with and without myocardial infarction. Journal of the American College of Cardiology. 1986; 8(6):1393-405. http://dx.doi.org/10.1016/S0735-1097(86)80313-8. PMid:3782643.

Cheek ER, Fast VG. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation. Circulation Research. 2004; 94(2):208-14. http://dx.doi.org/10.1161/01.RES.0000111526.69133.DE. PMid:14670844.

Christé G, Hadour G, Ovize M, Ferrera R. Brain death does not change epicardial action potentials and their response to ischemia-reperfusion in open-chest pigs. The Journal of Heart and Lung Transplantation. 2006; 25(7):847-53. http://dx.doi.org/10.1016/j.healun.2006.03.018. PMid:16818129.

Corbisiero R, Kabell G, Cook JR, Fitzgerald TF, Kirchhoffer JB. Effects of adenosine on local stimulus-response latency and induction of atrial fibrillation by premature stimuli. Pacing and Clinical Electrophysiology. 1999; 22(9):1378-85. http://dx.doi.org/10.1111/j.1540-8159.1999.tb00632.x. PMid:10527020.

Euler DE, Whitman TA, Roberts PR, Kallok MJ. Low voltage direct current delivered through unipolar transvenous leads: an alternate method for the induction of ventricular fibrillation. Pacing and Clinical Electrophysiology. 1999; 22(6):908-14. http://dx.doi.org/10.1111/j.1540-8159.1999.tb06815.x. PMid:10392389.

Fedorov VV, Nikolski VP, Efimov IR. Effect of electroporation on cardiac electrophysiology. Methods in Molecular Biology (Clifton, N.J.). 2008; 423:433-48. http://dx.doi.org/10.1007/978-1-59745-194-9_34. PMid:18370220.

Fonseca ASV, Bassani RA, Oliveira PX, Bassani JWM. Greater cardiac cell excitation efficiency with rapidly switching multidirectional electrical stimulation. IEEE Transactions on Biomedical Engineering. 2013; 60(1):28-34. http://dx.doi.org/10.1109/TBME.2012.2220766. PMid:23033428.

Goulart JT, Oliveira PX, Bassani JWM, Bassani RA. The influence of cell dimensions on the vulnerability of ventricular myocytes to lethal injury by high-intensity electrical fields. Revista Brasileira de Engenharia Biomédica. 2012; 28(4):337-45. http://dx.doi.org/10.4322/rbeb.2012.040.

Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology underlying sudden cardiac death. Circulation Research. 2015; 116(12):1887-906. http://dx.doi.org/10.1161/CIRCRESAHA.116.304521. PMid:26044246.

Hoeker GS, Hood AR, Katra RP, Poelzing S, Pogwizd SM. Sex differences in β-adrenergic responsiveness of action potentials and intracellular calcium handling in isolated rabbit hearts. PLoS One. 2014; 9(10):e111411. http://dx.doi.org/10.1371/journal.pone.0111411.

Jones DL, Klein JG, Rattes MF, Sohla A, Sharma AD. Internal cardiac defibrillation: single and sequential pulses and a variety of lead orientations. Pacing and Clinical Electrophysiology. 1988; 11(5):583-91. http://dx.doi.org/10.1111/j.1540-8159.1988.tb04554.x. PMid:2456537.

Kerber RE, Spencer KT, Kallok MJ, Birkett C, Smith R, Yoerger D, Kieso RA. Overlapping sequential pulses: a new waveform for transthoracic defibrillation. Circulation. 1994; 89(5):2369-79. http://dx.doi.org/10.1161/01.CIR.89.5.2369. PMid:8181163.

Knisley SB, Baynham TC. Line stimulation parallel to myofibers enhances regional uniformity of transmembrane voltage changes in rabbit hearts. Circulation Research. 1997; 81(2):229-41. http://dx.doi.org/10.1161/01.RES.81.2.229. PMid:9242184.

Koster RW, Walker RG, Van Alem AP. Definition of successful defibrillation. Critical Care Medicine. 2006; 34(12 Suppl):423-6. http://dx.doi.org/10.1097/01.CCM.0000246008.95156.78. PMid:17114971.

Krauthamer V, Jones JL. Calcium dynamics in cultured heart cells exposed to defibrillator-type electric shocks. Life Sciences. 1997; 60(22):1977-85. http://dx.doi.org/10.1016/S0024-3205(97)00162-8. PMid:9180351.

Kroll MW, Swerdlow CD. Optimizing defibrillation waveforms for ICDs. Journal of Interventional Cardiac Electrophysiology. 2007; 18(3):247-63. http://dx.doi.org/10.1007/s10840-007-9095-z. PMid:17541815.

Larsen MP, Eisenberg MS, Cummins RO, Hallstrom AP. Predicting survival from out-of-hospital cardiac arrest: a graphic model. Annals of Emergency Medicine. 1993; 22(11):1652-8. http://dx.doi.org/10.1016/S0196-0644(05)81302-2. PMid:8214853.

Malmivuo J, Plonsey R. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. New York: Oxford University Press; 1995.

Oliveira PX, Bassani RA, Bassani JWM. Lethal effect of electric fields on isolated ventricular myocytes. IEEE Transactions on Biomedical Engineering. 2008; 55(11):2635-42. http://dx.doi.org/10.1109/TBME.2008.2001135. PMid:18990634.

Pagan-Carlo LA, Allan JJ, Spencer KT, Birkett CL, Myers R, Kerber RE. Encircling overlapping multipulse shock waveforms for transthoracic defibrillation. Journal of the American College of Cardiology. 1998; 32(7):2065-71. http://dx.doi.org/10.1016/S0735-1097(98)00486-0. PMid:9857894.

Patil KD, Halperin HR, Becker LB. Cardiac arrest: resuscitation and reperfusion. Circulation Research. 2015; 116(12):2041-9. http://dx.doi.org/10.1161/CIRCRESAHA.116.304495. PMid:26044255.

Petrucci O Jr, Oliveira PP, Carmo MR, Vieira RW, Braile DM. Standardization of an isolated pig heart preparation with parabiotic circulation: methodological considerations. Brazilian Journal of Medical and Biological Research. 2003; 36(5):649-59. PMid:12715085.

Roscher R, Arlock P, Sjöberg T, Steen S. Effects of dopamine on porcine myocardial action potentials and contractions at 37 °C and 32 °C. Acta Anaesthesiologica Scandinavica. 2001; 45(4):421-6. http://dx.doi.org/10.1034/j.1399-6576.2001.045004421.x. PMid:11300379.

Shelton RJ, Brown BD, Allinson A, Johnson T, Smales C, Jolly S, Cleland JG. A comparison between monophasic and biphasic defibrillation for the cardioversion of persistent atrial fibrillation in patients with and without heart failure. International Journal of Cardiology. 2011; 147(3):405-8. http://dx.doi.org/10.1016/j.ijcard.2009.09.545. PMid:19861229.

Smerup M, Nielsen E, Agger P, Frandsen J, Vestergaard-Poulsen P, Andersen J, Nyengaard J, Pedersen M, Ringgaard S, Hjortdal V, Lunkenheimer PP, Anderson RH. The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. The Anatomical Record. 2009; 292(1):1-11. http://dx.doi.org/10.1002/ar.20798. PMid:19051244.

Tanabe S, Yasunaga H, Ogawa T, Koike S, Akahane M, Horiguchi H, Hatanaka T, Yokota H, Imamura T. Comparison of outcomes after use of biphasic or monophasic defibrillators among out-of-hospital cardiac arrest patients: a nationwide population-based observational study. Circulation: Cardiovascular Quality and Outcomes. 2012; 5(5):689-96. http://dx.doi.org/10.1161/CIRCOUTCOMES.112.965319. PMid:22967787.

Trayanova N, Bray MA. Membrane refractoriness and excitation induced in cardiac fibers by monophasic and biphasic shocks. Journal of Cardiovascular Electrophysiology. 1997; 8(7):745-57. http://dx.doi.org/10.1111/j.1540-8167.1997.tb00833.x. PMid:9255682.

Viana MA, Bassani RA, Petrucci O, Marques DA, Bassani JW. Rapidly switching multidirectional defibrillation: reversal of ventricular fibrillation with lower energy shocks. The Journal of Thoracic and Cardiovascular Surgery. 2014; 148(6):3213-8. http://dx.doi.org/10.1016/j.jtcvs.2014.07.035. PMid:25173125.

Yabe S, Smith WM, Daubert JP, Wolf PD, Rollins DL, Ideker RE. Conduction disturbances caused by high current density electric fields. Circulation Research. 1990; 66(5):1190-203. http://dx.doi.org/10.1161/01.RES.66.5.1190. PMid:2335021.

Zheng X, Benser ME, Walcott GP, Smith WM, Ideker RE. Reduction of the internal atrial defibrillation threshold with balanced orthogonal sequential shocks. Journal of Cardiovascular Electrophysiology. 2002; 13(9):904-9. http://dx.doi.org/10.1046/j.1540-8167.2002.00904.x. PMid:12380930.
5889fbfa5d01231a018b489e rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections