Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.01717
Research on Biomedical Engineering
Original Article

Adaptation of a smart walker for stroke individuals: a study on sEMG and accelerometer signals

Flávia Aparecida Loterio; Carlos Torturella Valadão; Vivianne Flávia Cardoso; Alexandre Pomer-Escher; Teodiano Freire Bastos; Anselmo Frizera-Neto

Downloads: 2
Views: 865

Abstract

Abstract: Introduction:: Stroke is a leading cause of neuromuscular system damages, and researchers have been studying and developing robotic devices to assist affected people. Depending on the damage extension, the gait of these people can be impaired, making devices, such as smart walkers, useful for rehabilitation. The goal of this work is to analyze changes in muscle patterns on the paretic limb during free and walker-assisted gaits in stroke individuals, through accelerometry and surface electromyography (sEMG).

Methods: The analyzed muscles were vastus medialis, biceps femoris, tibialis anterior and gastrocnemius medialis. The volunteers walked three times on a straight path in free gait and, further, three times again, but now using the smart walker, to help them with the movements. Then, the data from gait pattern and muscle signals collected by sEMG and accelerometers were analyzed and statistical analyses were applied.

Results: The accelerometry allowed gait phase identification (stance and swing), and sEMG provided information about muscle pattern variations, which were detected in vastus medialis (onset and offset; p = 0.022) and biceps femoris (offset; p = 0.025). Additionally, comparisons between free and walker-assisted gaits showed significant reduction in speed (from 0.45 to 0.30 m/s; p = 0.021) and longer stance phase (from 54.75 to 60.34%; p = 0.008).

Conclusions: Variations in muscle patterns were detected in vastus medialis and biceps femoris during the experiments, besides user speed reduction and longer stance phase when the walker-assisted gait is compared with the free gait.

Keywords

Stroke, sEMG, Smart walker, Gait, Accelerometer

References

Allen JL, Kautz SA, Neptune RR. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture. 2011; 33(4):538-43. PMid:21316240. http://dx.doi.org/10.1016/j.gaitpost.2011.01.004.

Balaban B, Tok F. Gait disturbances in patients with stroke. PM R. 2014; 6(7):635-42. PMid:24451335. http://dx.doi.org/10.1016/j.pmrj.2013.12.017.

Beaman CB, Peterson CL, Neptune RR, Kautz SA. Differences in self-selected and fastest-comfortable walking in post-stroke hemiparetic persons. Gait Posture. 2010; 31(3):311-6. PMid:20006505. http://dx.doi.org/10.1016/j.gaitpost.2009.11.011.

Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil. 2011; 8(1):66. PMid:22165907. http://dx.doi.org/10.1186/1743-0003-8-66.

Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005; 22(1):51-6. PMid:15996592. http://dx.doi.org/10.1016/j.gaitpost.2004.06.009.

Cifuentes CA, Rodriguez C, Frizera-Neto A, Bastos-Filho TF, Carelli R. Multimodal human-robot interaction for walker-assisted gait. IEEE Syst J. 2014; 10(3):933-43. http://dx.doi.org/10.1109/JSYST.2014.2318698.

Corrêa FI, Soares F, Andrade DV, Gondo RM, Peres JA, Fernandes AO, Corrêa JC. Muscle activity during gait following stroke. Arq Neuropsiquiatr. 2005; 63(3B):847-51. PMid:16258668.

Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010; 17(3):197-218. PMid:20074922. http://dx.doi.org/10.1016/j.pathophys.2009.12.001.

Den Otter AR, Geurts ACH, Mulder T, Duysens J. Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. Gait Posture. 2007; 25(3):342-52. PMid:16750632. http://dx.doi.org/10.1016/j.gaitpost.2006.04.007.

Dobrovolny CL, Ivey FM, Rogers MA, Sorkin JD, Macko RF. Reliability of treadmill exercise testing in older patients with chronic hemiparetic stroke. Arch Phys Med Rehabil. 2003; 84(9):1308-12. PMid:13680566. http://dx.doi.org/10.1016/S0003-9993(03)00150-3.

Dohring ME, Daly JJ. Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training. IEEE Trans Neural Syst Rehabil Eng. 2008; 16(3):310-3. PMid:18586610. http://dx.doi.org/10.1109/TNSRE.2008.920081.

Dragin A, Konstantinović L, Veg A, Schwirtlich L. Gait training of poststroke patients assisted by the Walkaround (body postural support). Int J Rehabil Res. 2014; 37(1):22-8. PMid:23820295. http://dx.doi.org/10.1097/MRR.0b013e328363ba30.

Han J, Jeon HS, Yi WJ, Jeon BS, Park KS. Adaptive windowing for gait phase discrimination in Parkinsonian gait using 3-axis acceleration signals. Med Biol Eng Comput. 2009; 47(11):1155-64. PMid:19693612. http://dx.doi.org/10.1007/s11517-009-0521-5.

Helal AS, Mokhtari M, Abdulrazak B. The engineering handbook of smart technology for aging, disability, and independence. New Jersey: John Wiley & Sons; 2008.

Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984; 64(1):35-40. PMid:6691052. http://dx.doi.org/10.1093/ptj/64.1.35.

Lamontagne A, Richards CL, Malouin F. Coactivation during gait as an adaptive behavior after stroke. J Electromyogr Kinesiol. 2000; 10(6):407-15. PMid:11102843. http://dx.doi.org/10.1016/S1050-6411(00)00028-6.

Lee JA, Cho SH, Lee YJ, Yang HK, Lee JW. Portable activity monitoring system for temporal parameters of gait cycles. J Med Syst. 2010; 34(5):959-66. PMid:20703612. http://dx.doi.org/10.1007/s10916-009-9311-8.

Martins MM, Santos CP, Frizera-Neto A, Ceres R. Assistive mobility devices focusing on Smart Walkers: classification and review. Robot Auton Syst. 2012; 60(4):548-62. http://dx.doi.org/10.1016/j.robot.2011.11.015.

Merletti AR, Torino P. Standards for reporting EMG data. J Electromyogr Kinesiol. 2015; 24(2):1-2.

Murray M, Hardee A, Goldberg RL, Lewek MD. Loading and knee flexion after stroke: Less does not equal more. J Electromyogr Kinesiol. 2014; 24(1):172-7. PMid:24210795. http://dx.doi.org/10.1016/j.jelekin.2013.10.006.

Ovbiagele B, Nguyen-Huynh MN. Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics. 2011; 8(3):319-29. PMid:21691873. http://dx.doi.org/10.1007/s13311-011-0053-1.

Pare JR, Kahn JH. Basic Neuroanatomy and Stroke Syndromes. Emerg Med Clin North Am. 2012; 30(3):601-15. PMid:22974640. http://dx.doi.org/10.1016/j.emc.2012.05.004.

Perry J, Burnfield JM. Gait analysis: normal and pathological function. J Sports Sci Med. 2010; 9(2):353.

Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J, Roger VL, Turner MB. Heart disease and stroke statistics - 2011 update. Circulation. 2011; 123(4):e18-209. PMid:21160056. http://dx.doi.org/10.1161/CIR.0b013e3182009701.

Routson RL, Clark DJ, Bowden MG, Kautz SA, Neptune RR. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture. 2013; 38(3):511-7. PMid:23489952. http://dx.doi.org/10.1016/j.gaitpost.2013.01.020.

Saremi K, Marehbian J, Yan X, Regnaux J, Elashoff R, Bussel B, Dobkin BH. Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects. Neurorehabil Neural Repair. 2006; 20(2):297-305. PMid:16679506. http://dx.doi.org/10.1177/1545968306287171.

Shao Q, Bassett DN, Manal K, Buchanan TS. An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Comput Biol Med. 2009; 39(12):1083-8. PMid:19818436. http://dx.doi.org/10.1016/j.compbiomed.2009.09.002.

Sheffler LR, Chae J. Hemiparetic Gait. Phys Med Rehabil Clin N Am. 2015; 26(4):611-23. PMid:26522901. http://dx.doi.org/10.1016/j.pmr.2015.06.006.

Suica Z, Romkes J, Tal A, Maguire C. Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects. J Bodyw Mov Ther. 2016; 20(1):65-73. PMid:26891639. http://dx.doi.org/10.1016/j.jbmt.2015.06.002.

Tan R, Wang S, Jiang Y, Ishida K, Fujie MG. Path tracking control of an omni-directional walker considering pressures from a user. Conf Proc IEEE Eng Med Biol Soc. 2013; 2013:910-3. PMid:24109836.

Tyson SF, Rogerson L. Assistive walking devices in nonambulant patients undergoing rehabilitation after stroke: the effects on functional mobility, walking impairments, and patients’ opinion. Arch Phys Med Rehabil. 2009; 90(3):475-9. PMid:19254614. http://dx.doi.org/10.1016/j.apmr.2008.09.563.

Valadão C, Caldeira E, Bastos-Filho TF, Frizera-Neto A, Carelli R. A New Controller for a Smart Walker Based on Human-Robot Formation. Sensors (Basel). 2016; 16(7):1116. PMid:27447634. http://dx.doi.org/10.3390/s16071116.

Verma R, Arya KN, Sharma P, Garg RK. Understanding gait control in post-stroke: implications for management. J Bodyw Mov Ther. 2012; 16(1):14-21. PMid:22196422. http://dx.doi.org/10.1016/j.jbmt.2010.12.005.

Whittle MW. Gait analysis: an introduction. 4th ed. New York: Elsevier; 2007.

World Health Organization – WHO. The top 10 causes of death, 2014 [internet]. Genève: WHO; 2015. [cited 2017 Apr 13]. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/
 

5a2fff450e8825e32567207f rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections