Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.01617
Research on Biomedical Engineering
Original Article

Ultrasonic method of microvibration detection: part II - additional processing method and applications

Costa Júnior, José Francisco Silva; Machado, João Carlos

Downloads: 0
Views: 893

Abstract

Introduction: In the last 28 years, the scientific community has been using elastography to evaluate the mechanical properties of biological tissue. The aim of this work was the optimization of the UDmV method, presented in Part I of the series, by means of modifying the technique employed to generate the reference sine and cosine functions, used for phase-quadrature demodulation, and determining how this modification improved the performance of the method. Additionally, the UDmV was employed to characterize the acoustic and mechanical properties of a 7% gelatin phantom. Methods: A focused transducer, TFTF , with a nominal frequency of 2.25 MHz, was used to induce the shear waves, with frequency of 97.644 Hz. Then, the modified UDmV method was used to extract the phase and quadrature components from ultrasonic RF echo-signals collected from four positions along the propagation path of the shear wave, which allowed the investigation of the medium vibration caused by wave propagation. The phase velocity, cscs , and attenuation, αsαs , of the phantom were measured and employed in the calculation of shear modulus, μ, and viscosity, η. Results: The computational simulation demonstrated that the modification in UDmV method resulted in more accurate and precise estimates of the initial phases of the reference sinusoidal functions used for phase-quadrature demodulation. The values for cscs and μ of 1.31 ± 0.01 m·s-1 and 1.66 ± 0.01 kPa, respectively, are very close to the values found in the literature (1.32 m·s-1 and 1.61 kPa) for the same material. Conclusion: The UDmV method allowed estimating of the acoustic and viscoelastic parameters of phantom.    

Keywords

Ultrasound, Shear wave, Shear modulus, Viscosity, UDmV, Kalman Filter    

References

Amador C, Urban M, Kinnick R, Chen S, Greenleaf JF. In vivo swine kidney viscoelasticity during acute gradual decrease in renal blood flow: pilot study. Revista de Ingenieria Biomedica. 2013; 7(13):68-78. PMid:24533039.
Amador C, Urban MW, Chen S, Chen Q, An KN, Greenleaf JF. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms. IEEE Transactions on Biomedical Engineering. 2011; 58(6):1706-14. PMid:21317078. http://dx.doi.org/10.1109/TBME.2011.2111419.

Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2004; 51(4):396-409. PMid:15139541. http://dx.doi.org/10.1109/TUFFC.2004.1295425.

Catheline S, Gennisson JL, Delon G, Fink M, Sinkus R, Abouelkaram S, Culioli J. Measuring of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. The Journal of the Acoustical Society of America. 2004; 116(6):3734-41. PMid:15658723. http://dx.doi.org/10.1121/1.1815075.

Catheline S, Gennisson JL, Fink M. Measurement of elastic nonlinearity of soft solid with transient elastography. The Journal of the Acoustical Society of America. 2003; 114(6 Pt1):3087-91. PMid:14714790. http://dx.doi.org/10.1121/1.1610457.

Céspedes I, Huang Y, Ophir J, Spratt S. Methods for estimation of subsample time delays of digitized echo signals. Ultrasonic Imaging. 1995; 17(2):142-71. PMid:7571208. http://dx.doi.org/10.1177/016173469501700204.

Chen S, Fatemi M, Greenleaf JF. Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. The Journal of the Acoustical Society of America. 2004; 115(6):2781-5. PMid:15237800. http://dx.doi.org/10.1121/1.1739480.

Chen X, Shen YY, Zheng Y, Lin HM, Guo YR, Zhu Y, Zhang X, Wang T, Chen S. Quantification of liver viscoelasticity with acoustic radiation force: A study of hepatic fibrosis in a rat model. Ultrasound in Medicine & Biology. 2013; 39(11):2091-102. PMid:23993170. http://dx.doi.org/10.1016/j.ultrasmedbio.2013.05.020.

Costa-Júnior JFS, Elsztain MAD, Sá AMFLM, Machado JC. Characterization of viscoelasticity due to shear wave propagation: A comparison of existing methods based on computational simulation and experimental data. Experimental Mechanics. 2017; 57(4):615-35. http://dx.doi.org/10.1007/s11340-017-0254-6.

Costa-Júnior JFS, Machado JC. Ultrasonic method of microvibration detection: development of the method. Revista Brasileira de Engenharia Biomédica. 2011; 27(1):46-56. http://dx.doi.org/10.4322/rbeb.2011.005.

Dewall RJ. Ultrasound elastography: principles, techniques, and clinical applications. Critical Reviews in Biomedical Engineering. 2013; 41(1):1-19. PMid:23510006. http://dx.doi.org/10.1615/CritRevBiomedEng.2013006991.

Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, Pennanen MF. Elastography of breast lesions: initial clinical results. Radiology. 1997; 202(1):79-86. PMid:8988195. http://dx.doi.org/10.1148/radiology.202.1.8988195.

Gennisson JL, Lerouge S, Cloutier G. Assessment by transient elastography of the viscoelastic properties of blood during clotting. Ultrasound in Medicine & Biology. 2006; 32(10):1529-37. PMid:17045874. http://dx.doi.org/10.1016/j.ultrasmedbio.2006.06.008.

Hasegawa H, Kanai H. Improving accuracy in estimation of artery-wall displacement by referring to center frequency of RF echo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2006; 53(1):52-63. PMid:16471432. http://dx.doi.org/10.1109/TUFFC.2006.1588391.

Huang CC, Chen PY, Shih CC. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Medical Physics. 2013; 40(4):042901-7. PMid:23556923. http://dx.doi.org/10.1118/1.4794493.

Meng W, Zhang G, Wu C, Wu G, Song Y, Lu Z. Preliminary results of acoustic radiation force impulse (ARFI) ultrasound imaging of breast lesions. Ultrasound in Medicine & Biology. 2011; 37(9):1436-43. PMid:21767903. http://dx.doi.org/10.1016/j.ultrasmedbio.2011.05.022.

Mitri FG, Urban MW, Fatemi M, Greenleaf JF. Shear wave dispersion ultrasonic vibrometry for measuring prostate shear stiffness and viscosity: an in vitro pilot study. IEEE Transactions on Biomedical Engineering. 2011; 58(2):235-42. PMid:20595086. http://dx.doi.org/10.1109/TBME.2010.2053928.

Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging. 1991; 13(2):111-34. PMid:1858217. http://dx.doi.org/10.1177/016173469101300201.

Sumura M, Shigeno K, Hyuga T, Yoneda T, Shiina H, Igawa M. Initial evaluation of prostate cancer with real-time elastography based on step-section pathologic analysis after radical prostatectomy: a preliminary study. International Journal of Urology. 2007; 14(9):811-6. PMid:17760747. http://dx.doi.org/10.1111/j.1442-2042.2007.01829.x.

Urban MW, Chen S, Fatemi M. A review of Shearwave Dispersion Ultrasound Vibrometry (SDUV) and its applications. Current Medical Imaging Reviews. 2012; 8(1):27-36. PMid:22866026. http://dx.doi.org/10.2174/157340512799220625.

Urban MW, Chen S, Greenleaf JF. Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2009; 56(4):748-58. PMid:19406703. http://dx.doi.org/10.1109/TUFFC.2009.1097.

Urban MW, Chen SG, Greenleaf JF. Harmonic motion detection in a vibrating scattering medium. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2008; 55(9):1956-74. PMid:18986892. http://dx.doi.org/10.1109/TUFFC.887.

Urban MW, Greenleaf JF. Harmonic pulsed excitation and motion detection of a vibrating reflective target. The Journal of the Acoustical Society of America. 2008; 123(1):519-33. PMid:18177179. http://dx.doi.org/10.1121/1.2805666.

Yamakoshi Y, Sato J, Sato T. Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1990; 37(2):45-53. PMid:18285015. http://dx.doi.org/10.1109/58.46969.

Zhang M, Castaneda B, Christensen J, Saad WE, Bylund K, Hoyt K, Strang JG, Rubens DJ, Parker KJ. Real-time sonoelastography of hepatic thermal lesions in a swine model. Medical Physics. 2008a; 35(9):4132-41. http://dx.doi.org/10.1118/1.2968939.

Zhang M, Nigwekar P, Castaneda B, Hoyt K, Joseph JV, Sant’Agnese A, Messing EM, Strang JG, Rubens DJ, Parker KJ. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound in Medicine & Biology. 2008b; 34(7):1033-42. PMid:18258350. http://dx.doi.org/10.1016/j.ultrasmedbio.2007.11.024.

Zheng Y, Chen S, Tan W, Kinnick R, Greenleaf JF. Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2007; 54(2):290-300. PMid:17328326. http://dx.doi.org/10.1109/TUFFC.2007.243.

Zheng Y, Greenleaf JF. Stable and unbiased flow turbulence estimation from pulse echo ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1999; 46(5):1074-87. PMid:18244301. http://dx.doi.org/10.1109/58.796113.

Zhu Y, Dong C, Yin Y, Chen X, Guo Y, Zheng Y, Shen Y, Wang T, Zhang X, Chen S. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography. Ultrasound in Medicine & Biology. 2015; 41(2):601-9. PMid:25542484. http://dx.doi.org/10.1016/j.ultrasmedbio.2014.09.028.

Zhu Y, Zhang XY, Zheng Y, Chen X, Shen YY, Lin HM, Guo Y, Wang T, Chen S. Quantitative analysis of liver fibrosis in rats with shearvvave dispersion ultrasound vibrometry: Comparison with dynamic mechanical analysis. Medical Engineering & Physics. 2014; 36(11):1401-7. PMid:24835187. http://dx.doi.org/10.1016/j.medengphy.2014.04.002. [ Links ]

59ea28390e8825770e9aaad7 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections