Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.01616
Research on Biomedical Engineering
Original Article

Developing a dynamic virtual stimulation protocol to induce linear egomotion during orthostatic posture control test

Da-Silva, Paulo José Guimarães; Cagy, Maurício; Infantosi, Antonio Fernando Catelli

Downloads: 0
Views: 802

Abstract

Introduction: In this work, the effect of a dynamic visual stimulation (DS) protocol was used to induce egomotion, the center of pressure (COP) displacement response. Methods: DS was developed concerning the scenario structure (chessboard-pattern floor and furniture) and luminance. To move the scenario in a discrete forward (or backward) direction, the furniture is expanded (or reduced) and the black and white background is reversed during floor translation while the luminance is increased (or reduced) by steps of 2 cd/m2. This protocol was evaluated using COP signals from 29 healthy volunteers: standing on a force platform observing the virtual scene (1.72 × 1.16 m) projected 1 m ahead (visual incidence angle: θl = 81.4° and θv = 60.2°), which moves with constant velocity (2 m/s) during 250 ms. A set of 100 DS was applied in random order, interspersed by a 10 s of static scene. Results: The Tukey post-hoc test (p < 0.001) indicated egomotion in the same direction of DS. COP displacement increased over stimulation (8.4 ± 1.7 to 22.6 ±5.3 mm), as well as time to recover stability (4.1 ± 0.4 to 7.2 ± 0.6 s). The peak of egomotion during DSF occurred 200 ms after DSB (Wilcoxon, p = 0.002). Conclusion: The dynamic configuration of this protocol establishes virtual flow effects of linear egomotion dependent on the direction of the dynamic visual stimulation. This finding indicates the potential application of the proposed virtual dynamic stimulation protocol to investigate the cortical visual evoked response in postural control studies.

Keywords

Center of pressure, Dynamic visual stimulation, Egomotion, Postural control, Virtual reality, Visual optic flow.

References

Akizuki H, Uno A, Arai K, Morioka S, Ohyama S, Nishiike S, Tamura K, Takeda N. Effects of immersion in virtual reality on postural control. Neuroscience Letters. 2005; 379(1):23-6. http://dx.doi.org/10.1016/j.neulet.2004.12.041. PMid:15814192.

Andersen GJ, Dyre BP. Spatial orientation from optic flow in the central visual field. Perception & Psychophysics. 1989; 45(5):453-8. http://dx.doi.org/10.3758/BF03210719. PMid:2726408.

Berthoz A, Lacour M, Soechting JF, Vidal PP. The role of vision in the control of posture during linear motion. Progress in Brain Research. 1979; 50:197-209. http://dx.doi.org/10.1016/S0079-6123(08)60820-1. PMid:551426.

Berthoz A, Pavard B, Young LR. Perception of linear horizontal self-motion induced by peripheral vision (linearvection): basic characteristics and visual-vestibular interactions. Experimental Brain Research. 1975; 23(5):471-89. http://dx.doi.org/10.1007/BF00234916. PMid:1081949.

Da Silva PJG, Nadal J, Infantosi AFC. Investigating the center of pressure velocity Romberg’s quotient for assessing the visual role on the body sway. Revista Brasileira de Engenharia Biomédica. 2012; 28(4):319-26. http://dx.doi.org/10.4322/rbeb.2012.039.

Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. Journal of Neuroengineering and Rehabilitation. 2015; 12(1):46. http://dx.doi.org/10.1186/s12984-015-0035-3. PMid:25957577.

Da-Silva PJG, Cagy M, Infantosi AFC. A new dynamic virtual stimulation protocol to induce vection. IFMBE Proceedings, 2015; 45:497-500. http://dx.doi.org/10.1007/978-3-319-11128-5_124.

Day BL, Guerraz M. Feedforward versus feedback modulation of human vestibular-evoked balance responses by visual self-motion information. The Journal of Physiology. 2007; 582(1):153-61. http://dx.doi.org/10.1113/jphysiol.2007.132092. PMid:17446222.

Dijkstra TMH, Gielen CCAM, Melis BJM. Postural responses to stationary and moving scenes as a function of distance to the scene. Human Movement Science. 1992; 11(1-2):195-203. http://dx.doi.org/10.1016/0167-9457(92)90060-O.

Dijkstra TMH, Schöner G, Gielen CCAM. Temporal stability of the action-perception cycle for postural control in a moving visual environment. Experimental Brain Research. 1994; 97(3):477-86. http://dx.doi.org/10.1007/BF00241542. PMid:8187859.

Dokka K, Kenyon RV, Keshner EA, Kording KP. Self versus environment motion in postural control. PLoS Computational Biology. 2010; 6(2):1-8. http://dx.doi.org/10.1371/journal.pcbi.1000680. PMid:20174552.

Dokka K, Kenyon RV, Keshner EA. Influence of visual scene velocity on segmental kinematics during stance. Gait & Posture. 2009; 30(2):211-6. http://dx.doi.org/10.1016/j.gaitpost.2009.05.001. PMid:19505827.

Fushiki H, Kobayashi K, Asai M, Watanabe Y. Influence of visually induced self-motion on postural stability. Acta Oto-Laryngologica. 2005; 125(1):60-4. http://dx.doi.org/10.1080/00016480410015794. PMid:15799576.

Gibson JJ. The perception of the visual world. Oxford: Houghton Mifflin; 1950.

Gibson JJ. The visual perception of objective motion and subjective movement. Psychological Review. 1954; 61(5):304-14. http://dx.doi.org/10.1037/h0061885. PMid:13204493.

Guerraz M, Bronstein AM. Mechanisms underlying visually induced body sway. Neuroscience Letters. 2008; 443(1):12-6. http://dx.doi.org/10.1016/j.neulet.2008.07.053. PMid:18672020.

Guerraz M, Gianna CC, Burchill PM, Gresty MA, Bronstein AM. Effect of visual surrounding motion on body sway in a three-dimensional environment. Perception & Psychophysics. 2001a; 63(1):47-58. http://dx.doi.org/10.3758/BF03200502. PMid:11304016.

Guerraz M, Thilo KV, Bronstein AM, Gresty MA. Influence of action and expectation on visual control of posture. Brain Research. Cognitive Brain Research. 2001b; 11(2):259-66. http://dx.doi.org/10.1016/S0926-6410(00)00080-X. PMid:11275487.

Haibach PS, Slobounov SM, Newell KM. The potential applications of a virtual moving environment for assessing falls in elderly adults. Gait & Posture. 2008; 27(2):303-8. http://dx.doi.org/10.1016/j.gaitpost.2007.04.004. PMid:17524647.

Kandel ER. Perception of motion, depth, and form. In: Kandel ER, Schwartz JH, Jessel TM, editors. Principles of neurological science. New York: Elsevier; 1991. p. 440-66.

Keshner EA, Dokka K, Kenyon RV. Influences of the perception of self-motion on postural parameters. Cyberpsychology & Behavior. 2006; 9(2):163-6. http://dx.doi.org/10.1089/cpb.2006.9.163. PMid:16640471.

Keshner EA, Kenyon RV, Langston J. Postural responses exhibit multisensory dependencies with discordant visual and support surface motion. Journal of Vestibular Research. 2004; 14(4):307-19. PMid:15328445.

Keshner EA, Kenyon RV. The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses. Journal of Vestibular Research. 2000; 10(4-5):201-19.

Keshner EA, Kenyon RV. Using immersive technology for postural research and rehabilitation. Assistive Technology. 2004; 16(1):54-62. http://dx.doi.org/10.1080/10400435.2004.10132074. PMid:15357148.

Kuba M, Kubová Z, Kremlácek J, Langrová J. Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Research. 2007; 47(2):189-202. http://dx.doi.org/10.1016/j.visres.2006.09.020. PMid:17129593.

Kuno S, Kawakita T, Kawakami O, Miyake Y, Watanabe S. Postural adjustment response to depth direction moving patterns produced by virtual reality graphics. Japanese Journal of Physiology. 1999; 49(5):417-24. http://dx.doi.org/10.2170/jjphysiol.49.417. PMid:10603425.

Lestienne F, Soechting J, Berthoz A. Postural readjustments induced by linear motion of visual scenes. Experimental Brain Research. 1977; 28(3-4):363-84. PMid:885185.

Lishman JR, Lee DN. The autonomy of visual kinaesthesis. Perception. 1973; 2(3):287-94. http://dx.doi.org/10.1068/p020287. PMid:4546578.

Masson G, Mestre DR, Blin O, Pailhous J. Low luminance contrast sensitivity: effect of training on psychophysical and optokinetic nystagmus thresholds in man. Vision Research. 1994; 34(14):1893-9. http://dx.doi.org/10.1016/0042-6989(94)90313-1. PMid:7941391.

Masson G, Mestre DR, Pailhous J. Effects of the spatio-temporal structure of optical flow on postural readjustments in man. Experimental Brain Research. 1995; 103(1):137-50. http://dx.doi.org/10.1007/BF00241971. PMid:7615029.

Mestre DR. Visual perception of self-motion. In: Proteau L, Elliott D, editors. Vision and motor control. Amsterdam: Elsevier Science Publishers B.V.; 1992. p. 421-38.

O’Connor KW, Loughlin PJ, Redfern MS, Sparto PJ. Postural adaptations to repeated optic flow stimulation in older adults. Gait & Posture. 2008; 28(3):385-91. http://dx.doi.org/10.1016/j.gaitpost.2008.01.010. PMid:18329878.

Paulus W, Straube A, Brandt T. Visual stabilization of posture: physiological stimulus characteristics and clinical aspects. Brain. 1984; 107(Pt 4):1143-63. http://dx.doi.org/10.1093/brain/107.4.1143. PMid:6509312.

Paulus W, Straube A, Krafczyk S, Brandt T. Differential effects of retinal target displacement, changing size and changing disparity in the control of anterior/posterior and lateral body-sway. Experimental Brain Research. 1989; 78(2):243-52. http://dx.doi.org/10.1007/BF00228896. PMid:2599035.

Pretto P, Ogier M, Bülthoff HH, Bresciani JP. Influence of size of the field of view on motion perception. Computer Graphics. 2009; 33(2):139-46. http://dx.doi.org/10.1016/j.cag.2009.01.003.

Reed-Jones RJ, Vallis LA, Reed-Jones JG, Trick LM. The relationship between postural stability and virtual environment adaptation. Neuroscience Letters. 2008; 435(3):204-9. http://dx.doi.org/10.1016/j.neulet.2008.02.047. PMid:18359162.

Seno T, Ito H, Sunaga S. The object and background hypothesis for vection. Vision Research. 2009; 49(24):2973-82. http://dx.doi.org/10.1016/j.visres.2009.09.017. PMid:19782099.

Seno T, Nakamura S, Ito H, Sunaga S. Static visual components without depth modulation alter the strength of vection. Vision Research. 2010; 50(19):1972-81. http://dx.doi.org/10.1016/j.visres.2010.07.004. PMid:20633575.

Slobounov S, Wu T, Hallett M, Shibasaki H, Slobounov E, Newell K. Neural underpinning of postural responses to visual field motion. Biological Psychology. 2006; 72(2):188-97. http://dx.doi.org/10.1016/j.biopsycho.2005.10.005. PMid:16338048.

Stoffregen TA. Flow structure versus retinal location in the optical control of stance. Journal of Experimental Psychology. Human Perception and Performance. 1985; 11(5):554-65. http://dx.doi.org/10.1037/0096-1523.11.5.554. PMid:2932530.

Stoffregen TA. The role of optical velocity in the control of stance. Perception & Psychophysics. 1986; 39(5):355-60. http://dx.doi.org/10.3758/BF03203004. PMid:3737368.

Streepey JW, Kenyon RV, Keshner EA. Field of view and base of support width influence postural responses to visual stimuli during quiet stance. Gait & Posture. 2007; 25(1):49-55. http://dx.doi.org/10.1016/j.gaitpost.2005.12.013. PMid:16464594.

Tossavainen T, Juhola M, Pyykkö I, Aalto H, Toppila E. Development of virtual reality stimuli for force platform posturography. International Journal of Medical Informatics. 2003; 70(2-3):277-83. http://dx.doi.org/10.1016/S1386-5056(03)00034-0. PMid:12909179.

Van Asten WNJC, Gielen CCAM, Van der Gon JJD. Postural adjustments induced by simulated motion of differently structured environments. Experimental Brain Research. 1988; 73(2):371-83. http://dx.doi.org/10.1007/BF00248230. PMid:3215313.

Wang Y, Kenyon RV, Keshner EA. Identifying the control of physically and perceptually evoked sway responses with coincident visual scene velocities and tilt of the base of support. Experimental Brain Research. 2010; 201(4):663-72. http://dx.doi.org/10.1007/s00221-009-2082-0. PMid:19924408.

Warren WH Jr, Hannon DJ. Direction of self-motion is perceived from optical flow. Nature. 1988; 336(6195):162-3. http://dx.doi.org/10.1038/336162a0.

Warren WH. Self-motion: visual perception and visual control. In: Epstein W, Rogers S, editors. Perception of space and motion. London: Academic Press; 1995. p. 263-325.
5889fc005d01231a018b48b2 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections