Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.01415
Research on Biomedical Engineering
Original Article

Growth rates of dynamic dermal model exposed to laminar flow and magnetic fields

Martinez, Luis Javier; Pinedo, Carlos Rafael; Gutierrez, Jose Oscar; Cadavid, Hector

Downloads: 0
Views: 809

Abstract

Introduction: Ongoing research in the use of electromagnetic stimulation as coadjuvant in fracture healing has led the authors to begin generating computer models in order to predict cellular growth changes when cells are electromagnetically stimulated. By generating these models, scientists will be able to better understand how electromagnetic fields affect cellular development. The experimental design integrated a cellular culture bioreactor along with an external magnetic stimulation system, which allowed for dermal models to be exposed to controlled magnetic fields. Methods: Initially, it was necessary to analyze the static growth of Normal Human Skin Fibroblast (NHSF) cells when they were exposed to Extremely Low Frequency – Electromagnetic Fields (ELF-EMFs). Using optimal conditions for the NHSF culture, from stimulation signal to scaffolding material, we were able to perform the dynamic flow stimulation experiments. Results: The following systems were developed: (1) a bioreactor aimed at cellular tissue culture, and (2) Helmholtz coils capable of generating stimulation signals for the cultured tissue. The authors were able to appreciate the quantified values of cellular density diluted in all the experiment samples that were taken and overall, the irradiated samples displayed an average increase of 53% higher cellular density for the same amount of initial cellular seeding when the cells were exposed to a 1 mT, 60 Hz magnetic field signal. Conclusion: ELF-EMF’s indeed alter NHSF cell growth rates and it is the challenge of the authors to continue investigating what cellular mechanisms are altered when cells are exposed to ELF-EMF’s.

Keywords

Bioelectromagnetics, Magnetic fields, Bioreactor, Helmholtz coils, Biomedical applications of radiation.

References

Alvarez Barreto JF. Regeneración ósea a través de la ingeniería de tejidos: una introducción. Revista de Estudios Transdisciplinarios. 2009; 1(2):98-109.

Cook JJ, Summers NJ, Cook EA. Healing in the new millennium: bone stimulators: an overview of where we’ve been and where we may be heading. Clinics in Podiatric Medicine and Surgery. 2015; 32(1):45-59. http://dx.doi.org/10.1016/j.cpm.2014.09.003. PMid:25440417.

Ferreira LM, Sobral CS, Blanes L, Ipolito MZ, Horibe EK. Proliferation of fibroblasts cultured on a hemi-cellulose dressing. Journal of Plastic, Reconstructive & Aesthetic Surgery; JPRAS. 2010; 63(5):865-9. http://dx.doi.org/10.1016/j.bjps.2009.01.086. PMid:19345169.

Focke F, Schuermann D, Kuster N, Schär P. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis. 2010; 683(1-2):74-83. http://dx.doi.org/10.1016/j.mrfmmm.2009.10.012. PMid:19896957.

Griffith LG, Naughton G. Tissue engineering: current challenges and expanding opportunities. Science. 2002; 295(5557):1009-14. http://dx.doi.org/10.1126/science.1069210. PMid:11834815.

Handoll HH, Brorson S. Interventions for treating proximal humeral fractures in adults. Cochrane Database of Systematic Reviews. 2015; 11:CD000434. http://dx.doi.org/10.1002/14651858.CD000434.pub4. PMid:26560014.

Iryanov YM, Kiryanov NA. Reparative osteogenesis and angiogenesis in low intensity electromagnetic radiation of ultra-high frequency. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk. 2015; 70(3):334-40. http://dx.doi.org/10.15690/vramn.v70i3.1330. PMid:26495722.

Li F, Xu KW, Wang HC, Guo WY, Han Y, Liu B, Zhang RQ. Effects of static magnetic field on human umbilical vessel endothelial cell. Journal of Medical Colleges of PLA. 2007; 22(2):106-10. http://dx.doi.org/10.1016/S1000-1948(07)60023-9.

Litovitz TA, Montrose CJ, Doinov P, Brown KM, Barber M. Superimposing spatially coherent electromagnetic noise inhibits field-induced abnormalities in developing chick embryos. Bioelectromagnetics. 1994; 15(2):105-13. http://dx.doi.org/10.1002/bem.2250150203. PMid:8024603.

Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. Cartilage tissue engineering: controversy in the effect of oxygen. Critical Reviews in Biotechnology. 2003; 23(3):175-94. http://dx.doi.org/10.1080/bty.23.3.175. PMid:14743989.

Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends in Biotechnology. 2004; 22(2):80-6. http://dx.doi.org/10.1016/j.tibtech.2003.12.001. PMid:14757042.

Martin Y, Vermette P. Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials. 2005; 26(35):7481-503. http://dx.doi.org/10.1016/j.biomaterials.2005.05.057. PMid:16023202.

Martinez-Rondanelli A, Martinez JP, Moncada ME, Manzi E, Pinedo CR, Cadavid H. Electromagnetic stimulation as coadjuvant in the healing of diaphyseal femoral fractures: a randomized controlled trial. Colombia Médica (Cali, Colombia). 2014; 45(2):67-71. PMid:25100891.

Martino CF, Perea H, Hopfner U, Ferguson VL, Wintermantel E. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics. 2010a; 31(4):296-301. PMid:20119972.

Martino CF, Portelli L, McCabe K, Hernandez M, Barnes F. Reduction of the earth’s magnetic field inhibits growth rates of model cancer cell lines. Bioelectromagnetics. 2010b; 31(8):649-55. http://dx.doi.org/10.1002/bem.20606. PMid:20830734.

Massari L, Osti R, Lorusso V, Setti S, Caruso G. Biophysical stimulation and the periprosthetic bone: is there a rationale in the use of Pulsed Electromagnetic Fields after a hip or knee implant? Journal of Biological Regulators and Homeostatic Agents. 2015; 29(4):1013-5. PMid:26753669.

Miyakoshi J. Effects of static magnetic fields at the cellular level. Progress in Biophysics and Molecular Biology. 2005; 87(2-3):213-23. http://dx.doi.org/10.1016/j.pbiomolbio.2004.08.008. PMid:15556660.

Moncada ME, Sarmiento C, Martinez C, Martinez A. Magnetic stimulation for fracture consolidation: clinical study. Conference Proceedings of IEEE Engingeering in Medicine and Biology Society. 2011; 33(1):1141-4.

Pinedo CR, Cadavid H, Gutiérrez JO, Restrepo AF, Martinez LJ, Criollo W. Desarrollo de un bioreactor con estimulación magnética y validación en un modelo de implante de piel artificial. Proyecto de convocatoria interna. Cali: Universidad del Valle; 2011.

Price RD, Das-Gupta V, Frame JD, Navsaria HA. A study to evaluate primary dressings for the application of cultured keratinocytes. British Journal of Plastic Surgery. 2001; 54(8):687-96. http://dx.doi.org/10.1054/bjps.2001.3712. PMid:11728112.

Reid MJ, Currie LJ, James SE, Sharpe JR. Effect of artificial dermal substitute, cultured keratinocytes and split thickness skin graft on wound contraction. Wound Repair and Regeneration. 2007; 15(6):889-96. http://dx.doi.org/10.1111/j.1524-475X.2007.00313.x. PMid:18028138.

Restrepo AF, Martinez LJ, Pinedo CR, Franco E, Cadavid H. Design study for a cellular culture bioreactor coupled with a magnetic stimulation system. IEEE Latin America Transactions. 2013; 11(1):130-6. http://dx.doi.org/10.1109/TLA.2013.6502791.

Shi HF, Xiong J, Chen YX, Wang JF, Qiu XS, Wang YH, Qiu Y. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study. BMC Musculoskeletal Disorders. 2013; 14(1):35. http://dx.doi.org/10.1186/1471-2474-14-35. PMid:23331333.

Vunjak-Novakovic G. The fundamentals of tissue engineering: scaffolds and bioreactors. Novartis Foundation Symposium. 2003; 249:34-46. http://dx.doi.org/10.1002/0470867973.ch4. PMid:12708648.
5889fbfa5d01231a018b489b rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections