Research on Biomedical Engineering
http://www.rbejournal.periodikos.com.br/article/doi/10.1590/2446-4740.00117
Research on Biomedical Engineering
Original Article

Evaluation of scoliosis using baropodometer and artificial neural network

Fanfoni, Caroline Meireles; Forero, Fabian Castro; Sanches, Marcelo Augusto Assunção; Machado, Érica Regina Marani Daruichi; Urban, Mateus Fernandes Réu; Carvalho, Aparecido Augusto de

Downloads: 1
Views: 246

Abstract

Introduction: One of the most recurrent pathologies in the spine is scoliosis. It occurs in the frontal plane and is formed by one or more curves in the spinal column. The scoliosis causes global postural misalignment in an individual. One of the modifications produced by postural misalignment isthe way in which an individual distributes weight to the feet. We aimed to implement an electronic system forseparating patients with Degree Iscoliosis(i.e., 1° to 19° scoliosis according to the Ricard classification) into two groups: C1 (1°-9°) and C2 (10°-9°). The highest percentage of patients with scoliosis is in this range: those who do not need to wear vests or undergo surgery and whose treatment is performed via special physical exercise and frequent evaluations by healthcare professionals. Methods: The electronic system consists of a baropodometer and artificial neural networks(ANNs). The classification of patients in the scoliosis groups was performed with MATLAB software and a Single Layer Perceptron network using the backpropagation training algorithm. Evaluations were performed on 63 volunteers. Results: The mean classification sensitivity was 93.7% in the C1 group and 94.5% in the C2 group. The classification accuracy was 83.3% in the C1 group and 96.0% in the C2 group. Conclusion: The implemented system can contribute to the treatment of patients with scoliosis grades ranging from 1° to 19°, which represents the highest incidence of this pathology, for which the monitoring of the clinical condition using noninvasive techniques is of fundamental importance.    

Keywords

Scoliosis, Baropodometer, Weight discharge, Artificial neural networks, Single layer perceptron.    

References

Ajemba PO, Ramirez L, Durdle NG, Hill DL, Raso VJ. A fuzzy classifier approach to assessing the progression of adolescent idiopathic scoliosis from radiographic indicators. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering; 2004 May 2-5; Niagara Falls, Ontario, Canada. USA: IEEE Conference Publications; 2004. p. 1467-70. http://dx.doi.org/10.1109/CCECE.2004.1349681. 

Almeida PO, Prudente GFG, Sá FE, Lima LAO, Moraleida FRJ, Cardoso KVV. Postural and load distribution asymmetries in preschoolers. Motri. 2015; 11(4):58-70. http://dx.doi.org/10.6063/motricidade.4033. 

Alvarenga GM, Zizcycki CC, Kunhavalik E, Gamba HR. A postura e o apoio plantar em idosas com escoliose no uso do método pilatesstúdio: resultados preliminares. In: Proceedings of the XXIV Brazilian Congress on Biomedical Engineering (CBEB); 2014 Oct 13-17; Uberlândia. Curitiba: CBEB; 2014. p. 2552-5. 

Bienfait M. As bases da fisiologia da terapia manual. São Paulo: Summus; 2000. 

Camilo CG Jr, Ueda MTM, Viana RF. Um sistema de auxílio ao diagnóstico da escoliose baseado em realidade aumentada. Revista Brasileira de Engenharia Biomédica. 2010; 26(3):185-93. http://dx.doi.org/10.4322/rbeb.2012.086. 

Castro FR. Aprimoramento de um baropodômetro eletrônico e análise de estabilometria em voluntários com escoliose [dissertation]. Ilha Solteira: Universidade Estadual Paulista “Júlio de Mesquita Filho”; 2016. 

Cordeiro TL, DuarteA, CollucciA, Frade M. Baropodometer as a clinical tool for evaluating and following treatment of postural deviations: a case report. Journal of Spine. 2014; 3(4):1000175. http://dx.doi.org/10.4172/2165-7939.1000175. 

Cunha ALLM, Rocha LEM, Cunha LAM. Método de Cobb na escoliose idiopática do adolescente: avaliação dos ângulos obtidos com goniômetros articulados e fixos. Coluna/Columna. 2009; 8(2):161-70. http://dx.doi.org/10.1590/S1808-18512009000200011. 

Folhadela NN, Mejia DPM. Utilização da técnica reeducação postural global (RPG) no tratamento da lombalgia Internet]. Manaus: Faculdade Ávila-Biocursos; 2012 [cited 2017 Jan 15]. Available from: http://portalbiocursos.com.br/ohs/data/docs/32/63_-_UtilizaYYo_da_tYcnica_de_ReeducaYYo_ Postural_Global_RPG_no_tratamento_da_lombalgia.pdf 

Igwe P, Emrani M,Adeeb S, Hill D.Assessing torso deformity in scoliosis using self-organizing neural networks (SNN). In: Proceedings of the 7th International Conference on Machine Learning and Applications; 2008 Dec 11-13; San Diego, CA, USA. USA: IEEE Conference Publications; 2008. p. 497-502. http://dx.doi.org/10.1109/ICMLA.2008.68. 

Kim H, Tan JK, Ishikawa S. Automatic judgment of spinal deformity based on back propagation on neural network. International Journal of Innovative Computing, Information and Control. 2006; 2(6):1271-9. 

Lin H. Identification of spinal deformity classification with total curvature analysis and artificial neural network. IEEE Transactions on Biomedical Engineering. 2008; 55(1):376-82. PMid:18232388. http://dx.doi.org/10.1109/TBME.2007.894831. 

Mezghani N, Phan P, Mitiche A, Labelle H, De Guise JA. A computer-aided method forscoliosisfusion levelselection by a topologicaly ordered self organizing kohonen network. In: Proceedings of the 20th International Conference on Pattern Recognition; 2010 Aug 23-26; Istanbul, Turkey. USA: IEEE Conference Publications; 2010. p. 4012-5. http://dx.doi.org/10.1109/ICPR.2010.976. 

Podaly [Internet]. Brusque: Podaly Posturologia; 2013 [cited 2017 Jan 15].Available from: http://www.podaly.com.br/2015/ 

Pontes S. Efeitos do método pilates no alongamento da cadeia posterior. Revista Nova Físio & Terapia. 2008; 60:23-4. 

Ramirez L, Durdle NG, Hill DL, Raso VJ. Prototypesstability analysisin the design of fuzzy classifiersto assessthe severity of scoliosis. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology-CCECE; 2003 May 4-7; Montréal. USA: IEEE Conference Publications; 2003. p. 1465-8. http://dx.doi.org/10.1109/CCECE.2003.1226180. 

Ricard F, Sallé JL. Tratamento osteopático da pelve. In: Ricard F, Sallé JL. Tratado de Osteopatia teórico e prático. São Paulo: Robe; 1996. p. 122-6. 

Rosenthal MS. Escoliose: uma abordagem sensata. Baltimore: University of Maryland; 2008 [cited 2017 June 5]. Available from: http://quackwatch.haaan.com/escoliose.html 

Schroth CL. Introduction to the three-dimensional scoliosis treatment according to Schroth. Physiotherapy. 1992; 78(11):810-5. http://dx.doi.org/10.1016/S0031-9406(10)60451-8. 

Segura DCA, Nascimento FC, Chiossi CA, Silva MAA, Guilherme JH, Santos JV. Estudo comparativo do tratamento da escoliose idiopática adolescente através dos métodos de rpg e pilates. Revista Saúde e Pesquisa. 2011; 4(2):200-6. http://dx.doi.org/10.17765/1983-1870.2011v4n2p%25p. 

Temurtas F. A comparative study on thyroid disease diagnosis using neural networks. Expert Systems withApplications. 2009; 36(1):944-9. http://dx.doi.org/10.1016/j.eswa.2007.10.010. 

Toledo PCV, Mello DB, Araújo ME, Daoud R, Dantas EHM. Global Posture Reeducation effectsin students with scoliosis. Fisioterapia e Pesquisa. 2011; 18(4):329-34. http://dx.doi.org/10.1590/S1809-29502011000400006. 

Urban MFR, Sanches MAA, Kozan RF, Felão LHV, Bazani MA, Carvalho AA. Desenvolvimento de um protótipo de baropodômetro. In: Anais do XXIV Congresso Brasileiro de Engenharia Biomédica (CBEB); 2014 Oct 13-17; Uberlândia. Curitiba: CBEB; 2014. p. 2687-90. 

Urban MFR. Implementação de um sistema eletrônico para avaliar a distribuição da força na região plantar de pacientes [thesis]. Ilha Solteira: Universidade Estadual Paulista “Júlio de Mesquita Filho”; 2015. 

Wafai L, ZayeghA, Woulfe J, Begg R.Automated classification of plantar pressure asymmetry during pathological gait using artificial neural network. In: Proceedings of the 2nd Middle East Conference on Biomedical Engineering; 2014 Feb 17-20; Doha, Qatar. USA: IEEE; 2014. p. 220-3. http://dx.doi.org/10.1109/MECBME.2014.6783244. 

Waller T, Nowak R, Tkacz M, Zapart D, Mazurek U. Familial or sporadic idiopathic scoliosis–classification based on artificial neural network and GAPDH andACTB transcription profile. Biomedical Engineering Online. 2013; 12(1):1-14. PMid:23289769. http://dx.doi.org/10.1186/1475-925X-12-1. 

Wu H, Ronsky JL, Poncet P, Cheriet F, Xue D, Harder JA, Zernicke RF. Prediction ofscoliosis progression in time series using a hybrid learning technique. In: Proceedings of the IEEE Engineering in Medicine and Biology 27thAnnual Conference; 2005 Sept 1-4; Shanghai, China. USA: IEEE Conference Publications; 2006. p. 6452-5. http://dx.doi.org/10.1109/IEMBS.2005.1615976.

59e9f7ee0e8825d2729aaae1 rbejournal Articles
Links & Downloads

Res. Biomed. Eng.

Share this page
Page Sections