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Introduction
Breast cancer is considered a major health problem 

in developed countries as well as in developing ones. 
This type of cancer is the second most frequent in the 
world and the most common among women. In 2017, an 
estimated 255,180 new cases of invasive breast cancer are 
expected to be diagnosed in the U.S. (Siegel et al., 2017).

In Brazil, breast cancer is still a disease with high 
levels of mortality due to late diagnosis, as the patient’s 
condition is too advanced. Among new cases of cancer, 
57,960 cases of breast cancer were estimated for 2016, 
with 14,388 estimated deaths caused by such disease. 

However, by diagnosing and treating in time, the prognosis 
of the disease can be good (Instituto..., 2016).

Tabár et al. (2005) support the theory that, before 
becoming systemic, breast cancer is limited to the breast 
for a variable time. Thus, the mammographic exam 
is the main resource for early diagnosis, influencing 
directly on the mortality rate and even on the possibility 
of curative treatment. Women from ages 40 to 49 have 
a significant reduction of 15 to 20% in the mortality 
rate when submitted to such exam (Pisano et al., 2005; 
Senie et al., 1994).

Several studies in recent years have shown the 
relationship between the predominant type of tissue in the 
breast (breast density) and the risk of developing breast 
cancer (Heine et al., 2012; Kim et al., 2014; Llobet et al., 
2014; Oliver et al., 2005; Petroudi et al., 2003). The risk 
of developing breast cancer is four to five times bigger 
for women who had the predominance of fibroglandular 
tissue in the breast (dense breast) than for women with 
fatty breast (non-dense breast) (Oliver et al., 2005).

The amount of fat or glandular tissue which constitutes 
the breasts varies a lot among patients, and this is directly 
related to the biotype of each one, as well as to hormonal 
and genetic factors, among others, influencing on how 
routine checkups are conducted (Riascos, 1999).
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To evaluate the mammographic images, the American 
College of Radiology (ACR) has proposed the Breast 
Imaging Reporting and Data System (BI-RADS™) aiming 
at standardizing reports and mammogram characterization 
among doctors, residents and specialists in the field 
(D’Orsi et al., 1998). In this way, four categories were 
created to classify the breast according to its density:

• Category a: the breast is predominantly adipose 
(fat);

• Category b: there are scattered areas of fibroglandular 
density;

• Category c: the breast is heterogeneously dense, 
which may obscure small masses;

• Category d: the breast is extremely dense, which 
lowers the sensitivity of mammography.

In the old BI-RADS™ edition, breast density was 
divided into categories 1 to 4. In the new edition, breast 
composition categories are ‘a’, ‘b’, ‘c’ or ‘d’. The current 
‘category a’ corresponds to the former ‘category 1’, 
the ‘category b’ to the former ‘category 2’ and so on 
(Mercado, 2014). Using percentages is discouraged 
because a better indicator of the risk of cancer would 
be the amount of fibroglandular tissue able to obscure 
a mass rather than the percentage of the predominant 
tissue in the breast (D’Orsi et al., 1998; Mercado, 2014).

Taking into account that the difference in intensity 
and texture among images from different categories is 
significant, the use of features based on a histogram and 
Haralick texture descriptors has constantly been studied 
in the literature (Kallenberg et al., 2011; Keller et al., 
2012; Manduca et al., 2009; Oliver et al., 2008; 2010; 
Petroudi et al., 2003; Riascos, 1999). However, as the 
classification of breast density is very subjective even for 
experts, in many cases, the category 2 (‘b’) is mistaken 
for the category 3 (‘c’) and vice versa.

Due to that, it is important to come up with a tool that 
can help classifying images by breast density, since the 
assessment of dense breasts is highly complex, making 
it difficult to detect lesions. In order to do so, different 
combinations of features extracted from mammograms 
were evaluated, and after they had been selected, we 
check what set and type of features can better classify 
this kind of image.

The contrast pattern in screen-film images provided 
a contrast characterization of breast density primarily by 
the variation in pixel intensities. However, this visual 
assessment has changed since digital imaging due to 
preprocessing algorithms, in which the breast density 
determination includes visual texture characteristics, 
and not only the gray level variation, changing the 
assessment paradigm. Thus, the approach of this paper 
is that mammograms classified into different categories 
for breast density are represented by different tissues 

with various characteristics. Therefore, each pattern 
density should present distinct characteristic each other.

The main goal of this work is to extract features 
of digital mammographic images (based on histogram 
and Haralick descriptors), select the best of them using 
K-means, and evaluate what type of features best 
characterizes digital mammographic images. With the 
best selected characteristics, images should be classified 
in the four BI-RADS™ categories of breast density 
using an artificial neural network (ANN) as a pattern 
classification method.

Methods
The steps taken to develop this paper are described 

next.

Dataset
We used 307 mammographic images from the digital 

INbreast database (Moreira et al., 2012), along with the 
radiologists’ classification using the four categories of 
breast density. As the new BI-RADS™ update is recent, 
the reports provided by the staff for this database was 
based on its previous edition. Nevertheless, this does 
not change the primary objective of this paper.

Of these 307 images used, 103 belong to category 1 
(fatty breast), 104 mammograms belong to category 2, 
73 to category 3, and the 27 remaining images belong 
to category 4 (dense breast). Figure 1 presents examples 
of the dataset used to exemplify the four categories of 
breast density based on the BI-RADS™.

Figure 1. INbreast database: examples of the four categories of breast 
density in mediolateral oblique view. (a) fatty breast; (b) there are scattered 
areas of fibroglandular density; (c) the breast is heterogeneously dense, 
which may obscure small masses; (d) dense breast.
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The mammographic breast density classification is a 
visual process, thus, there is a high degree of subjectivity, 
and it is strongly dependent on the professional’s 
experience. In this work the reports made by radiologists 
were considered the gold standard.

These images are in the DICOM format (Digital 
Imaging and Communications in Medicine), 12 bits per 
pixel, 3328 × 4084 or 2560 × 3328 pixels, depending 
on the size of the patient’s breast. They were obtained 
with the same equipment, a MammoNovation Siemens 
FFDM (Full Field Digital Mammography), and in this 
work both mediolateral oblique (MLO) and craniocaudal 
(CC) images were processed.

Feature extraction
In literature, some studies which classify mammograms 

into breast density using features based on histograms 
were proposed (Karssemeijer, 1998; Wang et al., 2003; 
Zhou et al., 2001). However, our experience has shown 
that using only features based on histograms are not 
sufficient for classifying the images because of the 
post-processing algorithm used in digital mammography.

In screen-film mammography used years ago, the 
four categories of breast density could be identified 
by analyzing the gray levels (histogram), in which 
category ‘a’ (fatty breast) had a lower gray level average 
(GLA) of pixels of the histogram compared to images 
in category ‘d’ (dense breast). This intensity difference 
occurs because most soft tissues, such as the adipose 
tissue, allow the radiation to get through more easily. 
As a result, mammograms with a predominance of fat 
appear darker than the images with a fibroglandular tissue 
because this type of tissue absorbs much of the radiation.

In digital mammography systems, each manufacturer 
has its own post-processing algorithm with a contrast 
window function. Hence, there is a variation in the gray 
level of the images (Mousa et al., 2014). Thus, analyzing 
only features extracted from histograms can confuse the 
classification, where dense breast images from category 
‘d’ can present a lower GLA when compared to the other 
categories of breast density. This variation contradicts 
the logic presented in the screen-film mammography.

For this reason, in this paper, we decided to combine 
features extracted from histograms and Haralick texture 
descriptors, since, in digital images, texture variation 
occurs more clearly than the variation of gray levels. 
We extracted nine features from histograms and 
14 Haralick texture descriptors (Gonzalez and Woods, 
2007; Haralick et al., 1973).

Before the feature extraction, the preprocessing step 
used in this work was the removal of the background 
from the image. Therefore, we assure that the extracted 
features correspond to the entire glandular portion of 
the mammographic image.

The features extracted from histograms were: gray 
level average (GLA), value of intensity of the highest peak 
of the histogram (mode), value of the lowest intensity 
of the histogram, value of the highest intensity of the 
histogram, percentage of the highest intensity compared 
to the maximum possible intensity, subtraction of the 
average to the lowest value, the highest pixel value of 
the image subtracted from its average, number of pixels 
higher than the peak, and gradient (subtraction of the 
highest intensity to the lowest intensity).

The image texture contains information about the 
spatial distribution of intensity variations within a range 
of values (Gonzalez and Woods, 2007) and the texture 
features used in this work were the Haralick texture 
descriptors (Haralick et al., 1973). These descriptors 
use the gray level co-occurrence matrix (SGLD - Spatial 
Gray- Level Dependence) to calculate the probability of 
combined occurrence of direction and distance between 
pairs of pixels with similar intensity values, separated 
by a distance (d) in an angle (θ).

The co-occurrence matrix takes into account the 
relationship between two pixels at a time, the first being 
called the reference pixel, and the second, the neighboring 
pixel. In this paper, we produced the texture features from 
the average of the value obtained for each of the four 
angles (0º, 45º, 90º, 135º) with distance equal to 1 (d=1) 
(Haralick et al., 1973; Horsthemke and Raicu, 2007).

A set of 14 Haralick descriptors were implemented, 
namely: energy or uniformity; contrast; correlation; 
variance; inverse difference moment; sum average; sum 
variance; sum entropy; entropy; difference variance; 
difference entropy; information measure of correlation 1; 
information measure of correlation 2; and maximum 
correlation coefficient.

For each image, we extracted nine features from 
the histogram and 14 Haralick texture descriptors. 
We calculate average, and standard deviations for all 
the 23 features of images in the same category, and the 
values obtained were compared in each of the categories.

Feature selection
The feature selection is a step of the data preprocessing 

phase. The purpose of this step is to choose one or 
more subsets of features which reduce the complexity 
of the database in addition to reducing the processing 
and amount of variables to be analyzed. With this size 
reduction, the processing time becomes smaller and 
unnecessary features are removed from the classification 
stage, avoiding features that may cause confusion in 
the final results.

For the feature selection, we used the K-means 
technique (Hartigan and Wong, 1979). The K-means 
method aims at partitioning n observations among the 
k clusters, in which each observation belongs to the 
cluster closest to its average.
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The K-means is a non-hierarchical heuristic of 
clustering which aims at minimizing the distance from the 
elements to a cluster of k centers given by χ={x1,x2,...,xk}
in an iterative way. The distance between a pi point and 
a set of clusters, given by d(pi,χ), is defined as being the 
distance from the point to the nearest center. We used k 
equal to 4, corresponding to four clusters, one for each 
class of breast density. The equation of K-means (1) is 
presented below, where ||xi

(j) - cj||
2 is a chosen distance 

measure between a data point xi
(j) and the cluster center cj:
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2

− −
= −∑ ∑

k n j
i j
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All the 23 features were tested individually in the 
K-means technique. The features that obtained more 
than 60% of hit rate in the feature selection classification 
were combined simultaneously in the K-means technique 
and, with the best results obtained, we created a subset 
of features to be used in the classification technique 
(ANN) as shown in the Results Section.

Density classification
After the extraction and the selection of the features, 

we used an ANN as a pattern classification method 
(Kovács, 1996; Patterson, 1998). The main goal was to 
classify the images into the four existing categories of 
breast density, as well as to verify if these images were 
classified into the correct category.

The ANN was implemented using the MATLAB 
neural network toolbox (Beale et al., 2015). Among the 
many existing artificial neural networks, the supervised 
feedforward neural network model with the backpropagation 
learning algorithm was chosen to be used in this paper.

A backpropagation algorithm seeks iteratively to 
find the minimum difference between desired outputs 
(DO) and outputs (O) obtained by the neural network 
with the least number of errors (E). Thus, the error in 
the output layer is calculated and backpropagated in 
the opposite direction (output → input). The weights 
are, then, adjusted between the layers through the 
backpropagation in each iteration (Beale et al., 2015; 
Haykin, 2004; Patterson, 1998; Rumelhart et al., 1988).

The training function used was ‘traingdx’ which 
means a gradient descent with momentum and an adaptive 
learning rate backpropagation. In this network, the training 
function updates weight and bias values according to a 
gradient descent momentum and an adaptive learning 
rate (Beale et al., 2015).

Backpropagation is used to calculate derivatives 
(Equation 2) of performance (perf) on the weight and bias 
variables X (Beale et al., 2015). Each variable is adjusted 
according to a gradient descent with momentum, where 
mc is the momentum constant, dXprev is the previous 
change to the weight and bias, lr is the learning rate:

( )    = × + × × 
 

dperfdx mx dxprev lr mc
dx

  (2)

For each epoch, if performance decreases toward 
the goal, then the learning rate is increased by a factor 
called learning rate increase. If performance increases 
by more than the parameter of maximum performance 
increase, the learning rate is adjusted by the factor called 
learning rate decrease and the change that increased the 
performance is not made.

The training stops when any of these conditions 
occurs: the maximum number of epochs (repetitions) 
is reached; the maximum amount of time is exceeded; 
performance is minimized to the goal; the performance 
gradient falls below the minimum performance gradient, 
and validation performance increases more than the 
maximum validation failures since the last time it 
decreased (when using validation).

In this model of neural network, the user can 
change and vary the configuration, such as the number 
of neurons in the input and hidden layer, the activation 
function of each of this layers, the number of epochs, 
the minimum performance gradient, and the maximum 
validation failures.

The number of neurons in the input layer corresponds 
to the number of features that were being analyzed. Only 
one hidden layer was used, and the number of neurons 
in this layer was tested one to three times greater than 
the number of neurons in the input layer (one by one) 
so, if the set of features analyzed was 8, the minimum 
number of neurons tested was 8, and the maximum, 24. 
The number of neurons in the output layer is fixed and 
equal to 2 (in this case). This number of neurons means 
that the output was given in binary values (Islam et al., 
2010; Rouhi et al., 2015).

The number of epochs was tested changing its 
value from 100,000 to 200,000 epochs, the minimum 
performance gradient was set as 10-6, and the maximum 
validation failures were tested, and the values ranged 
from 10,000 to 100,000.

We produced four groups of features which were 
separately tested in the neural network with different 
configurations according to the feature selection obtained 
by the K-means method. Once the best results were 
obtained, the neural network configuration, including 
the numbers of neurons and activation functions, was 
saved, and each neural network (4 ANNs, one for each 
group of selected features, presented in Results Section) 
was trained ten times. The final result for the classifier 
was the average of these ten training sessions using 
such configuration.

The group of images is divided into training 
and test group wherein these groups are randomly 
generated for each time the neural network is trained. 
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For categories 1, 2 and 3, 51 images were used for 
training and, for category 4, we used 19 images in the 
training group. The training group has a part of images 
for the network training, and another part is separated 
for test and validation. On the other hand, the test group, 
which was randomly generated, is tested independently 
after the training, allowing us to verify the performance 
of the Artificial Neural Network.

Of the 307 images, we used 172 images in the training 
group and 135 images in the test group. The number (n) 
of images for each class of breast density assigned to the 
training and test group are shown in Table 1. For all the 
ANNs, the same set of samples, i.e., the same number 
of images for each class of breast density was used, in 
accordance with Table 1.

Results
Table 2 presents the results obtained through feature 

selection by using the K-means technique. The more 
accurate the rate of a feature is, the better it is to classify 
the images, and thus, probably it will be a useful feature 
to be used in the ANN.

The result of the K-means technique for all the 
23 features (57% of accuracy) showed and motivated 

the importance of the feature selection. Even so, one 
of the artificial neural network tested was with all the 
23 features as input (ANN 4) to compare with the ANNs 
that a set of selected features were used as input.

In general, when the features were not combined 
among themselves, it became apparent that the texture 
descriptors showed better results compared to the one 
extracted from the histogram. The results ranged from 
60.26% (difference entropy) to 75.57% (energy or 
uniformity) of hit accuracy. For the intensity features, 
the best individual results were for GLA and peak of 
the histogram, with 65.46% and 63.19% of accuracy 
rate, respectively.

After testing the features individually, we decided 
to combine two or more features (hit rate greater than 
60%), trying to produce better results for the K-means. 
In some cases, this combination was not successful, 
such as when we used only features extracted from the 
histogram, resulting in a small percentage hit (33%), far 
lower than the accuracy of the 14 Haralick descriptors.

The best results for K-means, i.e., the features which 
proved to be the best for clustering images into the four 
categories of breast density, were those combined and 
applied simultaneously, as shown in Table 2: ‘Combined 
Features 1’ and ‘Combined Features 2’.

Table 1. The number of images for each class in the training and test groups of the artificial neural network.

Group n(Class 1) n(Class 2) n(Class 3) n(Class 4)
Training 51 51 51 19

Test 52 53 22 08
Total 103 104 73 27

Table 2. Feature selection: hit percentage of some features using K-means.

Features Hit percentage (K-means)
All the 23 features 57%
Difference entropy 60.26%
Entropy 61.23%
14 Haralick descriptors 61.89%
Peak of the histogram 63.19%
Information measure of correlation 1 63.51%
Contrast 64.49%
Maximal correlation coefficient 64.82%
Gray level average 65.46%
Sum average 67.1%
Correlation 67.42%
Variance 67.75%
Gray level average and peak of the histogram 69.7%
Energy (Uniformity) 75.57%
Energy and Correlation 76.87%
Energy, variance, correlation, sum average 79.46%
Combined features 1* 79.8%
Combined features 2** 80.8%
*Combined features 1: energy, variance, correlation, sum average, gray level average, peak of the histogram, gradient and subtraction of the highest value 
to the average. **Combined features 2: energy, variance, correlation, sum average, gray level average and peak of the histogram.
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‘Combined Features 1’ resulted in 79.8% accuracy, 
being composed of the following Haralick descriptors: 
energy, variance, correlation and sum average, as well 
as the features extracted from the histogram: GLA 
(gray level average), peak of the histogram, gradient 
and the highest pixel value of the image subtracted 
from its average.

The best result was with the ‘Combined Features 2’ 
with 80.8% of hit rate. This set of features is a combination 
of Haralick descriptors and intensity features too, such 
as energy, variance, correlation, sum average, GLA and 
peak of the histogram.

From the results of the feature selection, we proposed 
four test groups (ANNs) formed by sets of features 
(ANN 1 comprises the ‘Combined Features 1’ as input, 
ANN 2 comprises the ‘Combined Features 2’ as input, 
ANN 3 is formed only by texture descriptors with 60% 
or more of hit rate as input, and the ANN 4 comprises 
the 23 extracted features):

• Input features set for ANN 1: energy, variance, 
correlation, sum average, GLA, peak of the 
histogram, gradient and the highest pixel of the 
image subtracted from its average;

• Input features set for ANN 2: energy, variance, 
correlation, sum average, GLA and peak of the 
histogram;

• Input features set for ANN 3: energy, variance, 
correlation, sum average, difference entropy, 
entropy, information measures of correlation 
1 and 2, contrast and maximal correlation 
coefficient;

• Input features set for ANN 4: nine features from 
histograms and 14 Haralick texture descriptors 
combined.

Table 3 shows the number of neurons used in the 
input and hidden layers for each test, the mean squared 
error (MSE), hit percentage average for the ANN and the 
standard deviation from the ten training and tests. These 
results consist of the average of ten training sessions and 
tests of the ANN with the best configuration. The best 
results were obtained using log-sigmoid as an activation 
function for all the ANNs.

From Table 3, the best accuracy was obtained in 
ANN 2 with approximately 98.95%, on average, of hit 
percentage. The number of neurons used in the input 

and hidden layer for this test was 6 and 10, respectively, 
and the mean squared error equals to 9.1.10-3. The best 
configuration for ANN 1 was with eight neurons in the 
input layer and 14 on the hidden layer. These settings 
obtained 97.33% of hit percentage and a mean squared 
error of 1.9.10-2. When, for ANN3, ten features and 
16 neurons were used in the hidden layer, the hit percentage 
obtained was 92.9% of classification.

For the ANN 4, that one with the worst classification 
result, the classification obtained 73.99%, on average, of 
hit accuracy. This way, the mean squared error calculated 
was too high (3.4.10-1), indicating the increased ANN’s 
degree of confusion. Using all the 23 extracted features 
as input, the best configuration had 40 neurons in the 
hidden layer.

During the ten training sessions and tests, the best 
result obtained for ANN 1 was 97.78% of hit percentage 
and the worst, 96.29%. ANN 2 achieved 99.26% of hit 
accuracy (the best result for this ANN), and the worst 
result was 97.03% of hit accuracy. For ANN 3, the best 
result achieved a success rate of 95.55%, and the worst 
result was 88.15% of hit rate. The best and worst result 
obtained for ANN 4, during the ten training sessions 
and tests, was 76.29% and 70.37% of hit percentage, 
respectively.

Another analysis conducted is about the number 
of errors made by the ANN algorithm. In other words, 
the number of confusion/mistakes the algorithm made 
classifying a certain image out of its original category 
were counted.

During the ten training sessions and tests, for ANN 1, 
36 mistakes were made in total, for ANN 2, 14 mistakes, 
for ANN 3, 96 mistakes, and for ANN 4, 351 mistakes. 
This number of errors indicates that, for each training, 
on average, the Artificial Neural Network classifies 3, 
1.4, 9.6, and 35.1 images wrongly for ANN 1, ANN 2, 
ANN 3, and ANN 4, respectively. Table 4 summarizes 
these results.

The best results for ANN 1, ANN 2, ANN 3, and ANN 
4 generated three, one, six, and 32 mistakes, respectively. 
Most of the errors were related to the inversion of 
category 2 to category 3 of breast density, causing two 
out of the three mistakes for ANN 1, four out of the six 
mistakes for ANN 3, and 11 out of the 32 mistakes for 
ANN 4. For the ANN 2, the only mistake was classifying 
as category 3 what was, in fact, category 4.

Table 3. Hit percentage of the Artificial Neural Network.

Test Number of neurons 
(Input/Hidden) Mean squared error Hit percentage

(Average) Standard deviation

ANN 1 8/14 1.9x10-2 97.33% 0.0052
ANN 2 6/10 9.1x10-3 98.95% 0.0071
ANN 3 10/16 8.7x10-2 92.9% 0.025
ANN 4 23/40 3.4x10-1 73.99% 0.056
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Discussion
The K-means technique has revealed itself as a good 

feature selection method, allowing us to choose the 
most relevant features from it, thus, reducing probable 
characteristics that would cause confusion in the ANN. 
In addition, without the feature selection, i.e., when 
we used all the 23 features, the low accuracy justifies 
the selection of a set of features, trying to improve the 
computational cost and the classification.

Fewer images from the category 4 (dense breast) 
of breast density could lead to problems for the neural 
network classification, e.g., overfitting, misclassification 
or underestimating the category samples. Thus, for 
trying to avoid these problems, we cross-validated the 
network 10 times, on which random groups for training 
and testing were generated for evaluation.

The results (hit accuracy) obtained using Haralick 
texture descriptors were higher than the features extracted 
from the histogram. This is caused because the digital 
images distinguish themselves more in texture rather than 
in intensity of gray level, as a result of post-processing. 
Images with a dominance of fat tissue should display 
lower intensity compared to images with a dominance of 
fibroglandular tissue, but this was not what the findings 
revealed. Nevertheless, the difference in texture between 
these types of tissue has become more evident due to the 
greater variation in intensity within a range of values.

The features based on the histograms have revealed 
a high variance in the same category, which could be 
explained by the presence of nodular lesions in the images, 
changing the level of intensity of pixels between them 
and making it harder to classify from these features.

Analyzing Table 2, it is possible to verify that the 
best results are obtained when more than one feature is 
used concurrently with the technique of feature selection. 
Nonetheless, as a feature is added, the group of features 
does not necessarily get better. This effect, known as 
dimensionality curse, occurred when the 23 features 
analyzed simultaneously produce worse results that 
when a smaller number of features are analyzed.

ANN 2 has scored the best result of the neural 
network with only 14 mistakes during the ten training 
sessions and tests of the network. On average, 98.95% 
of the images were classified correctly in their category.

The ‘energy’ feature indicates homogeneity, which 
means more homogeneous textures, such as images 

from category 4. These images have a higher energy 
compared to the images of the other categories of breast 
density. ‘Variance’, ‘correlation’ and ‘sum average’ are 
related to the image background. The first denotes the 
intensity variation of the image background, the second 
is an indicator of an implicit structure in the texture, 
and the last, ‘sum average’ descriptor, is an average of 
the image background pixels. ‘GLA’ and ‘peak of the 
histogram’ indicate the gray level average, in which 
darker images tend to have a lower GLA value, and the 
histogram mode, respectively.

For ANN 2 the higher confusion was when classifying 
images of category 4. This confusion is probably due 
to the lower number (8) of images tested, as there were 
few cases of such category in the database to be used. 
For ANN 1, ANN 3, and ANN 4 the vast majority of the 
mistakes were in the intermediate categories, 2 and 3 
of the density category, due to the similarity of texture 
from images of such category.

However, the intrinsic subjectivity of the mammographic 
classification process by categories of density makes the 
task even more difficult and subjected to results with a 
higher level of confusion. Through the use of a clustering 
technique, it is possible to develop an automatic system 
to aid this task with an acceptable number of mistakes 
since the extraction of features is adequate to the 
characteristics of the image that involves the problem.

Comparing our study with others in the literature, 
Mustra et al. (2012) extracted texture features for breast 
density classification using k-nearest neighbor’s (k-NN) 
algorithm achieving 76.4% of hit rate (Mustra et al., 
2012). Oliver et al. (2005) classified 300 mammographic 
images using k-NN with 67% of accuracy, extracting 
texture and morphological features (Oliver et al., 2005). 
Wang et al. (2003) achieve 71% of hit rate using an ANN 
for the classification of 195 mammographic images in 
four categories of breast density (Wang et al., 2003).

Our work contributes to the classification by 
breast density, indicating that the images could be 
differentiated more by texture descriptors than by gray 
levels (histogram). With the use of an Artificial Neural 
Network, and a method of feature selection, 98.95% of 
the images were classified correctly within its category. 
From this method it was possible to automate this task, 
aiding radiologists in the report of the categories of 
breast density and possibly increasing the detection of 
breast cancers.

Table 4. Average of the number of mistakes and errors made by the Artificial Neural Network for each category of breast density.

Test Category 1 Category 2 Category 3 Category 4 Average errors
ANN 1 0.5 1.6 0.9 0.6 3.6
ANN 2 0.3 0.2 0.2 0.7 1.4
ANN 3 0.4 3 4.3 1.9 9.6
ANN 4 4.6 10.8 12.1 7.6 35.1
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The next steps of the project are: implementing an 
image segmentation technique, with the removal of the 
pectoral muscle; expanding the database, adding more 
images of categories 3 and 4; and also including this 
automatic model in a computer-aided diagnosis system, 
which is being developed by this research group.
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