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Introduction
Multiple Sclerosis (MS) is a neurodegenerative 

disease characterized by inflammatory demyelination in 
the central nervous system, destroying the myelin sheath 
that surrounds the axons (Kritas et al., 2014). MS lesions 
are associated with inflammation and essential structural 
changes, such as demyelination and a variable extent 
of axonal destruction and scar formation. (Lassmann, 
1999). Although the visible lesions in the medical images 
allow evaluating the evolution of the disease at a certain 

stage, the quantification of microscopic tissue damage 
can contribute to a better study of the disease and serve 
as basis for more specific and effective treatments 
(Filippi et al., 2017; Santos, 2007). MS is progressive 
and has no cure, there are only palliative treatments, 
which are partially effective, exist to manage the course 
of the disease and (Goldenberg, 2012).

Magnetic resonance imaging (MRI) is widely used 
for the diagnosis and treatment of neurodegenerative 
diseases by providing well-detailed images of brain 
structures. These images present good sensitivity to 
evidence demyelinating lesions, but low specificity in 
microscopic lesions. The great potential of intrinsic 
information in the MR signal from different pulse 
sequences led to the development of different quantitative 
methodologies contemplating biological aspects involved 
in the pathophysiological process of the production of the 
tissue lesion (Filippi et al., 2017; Santos, 2007). Since 
the early 1990s, more sophisticated MRI pulse sequences 
associated with post processing methods have been 
used to provide quantitative data that allow measuring 
non-visible microscopic changes in conventional images, 
therefore not accessible by conventional radiologist 
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analysis. Among these quantitative techniques, the most 
known and widespread are: morphometry, relaxometry, 
magnetization transfer, proton spectroscopy and diffusion 
(Filippi et al., 2017).

Machine learning techniques are useful for exploring 
a hyperplane or hypersurface among high dimensional 
training features and the categorization of a testing subject 
as a member of a particular clinical group. For example, 
support vector machine has been used to differentiate 
Alzheimer’s patients from normal controls and rule out 
alternative causes of dementia (Li et al., 2014). Pattern 
recognition techniques applied in neuroimaging data 
analysis may show greater sensitivity than traditional 
approaches such as statistical methods and visual 
inspection, contributing to the detection and treatment 
of diseases (Weygandt et al., 2011). Some recognition 
techniques can also be applied to identify the role of 
different characteristics in the classification problem. 
In other words, its application in a particular clinical 
group can indicate the more relevant parameters related 
to a particular disease.

Quantitative MRI techniques enable a comprehensive 
characterization of brain tissue, but generate a large 
number of numerical results. More than a thousand 
attributes can be generated from a single subject if a 
detailed segmentation of the brain is considered, making 
group studies complex and inefficient by parametric 
techniques of data analysis. A large volume of data can 
be manipulated using pattern recognition, a subtopic of 
machine learning which is in turn a subfield of artificial 
intelligence. In the neuroimaging area, the techniques 
of pattern recognition have gained space in the study of 
MS, but focused on the lesion’s segmentation and on 
using attributes of shape and texture from qualitative 
anatomical images (Geremia et al., 2011; Kamber et al., 
1995; Lao et al., 2008; Quddus et al., 2006). In 2011, 
Weygandt and colleagues extended the application of these 
techniques to areas of normal appearing white and gray 
matter using T2-weighted image data (Weygandt et al., 
2011). In general, recognition techniques have reduced 
the number of false positives from visual evaluation 
in this particular application (Geremia et al., 2011; 
Lao et al., 2008; Weygandt et al., 2011). The use of 
data from quantitative MR techniques has been scarce 
because it requires the acquisition of a large number 
of subjects with several pulse sequences making the 
acquisition process complex and costly. Additionally, 
access to this data is generally restricted for privacy 
reasons. A recent work has shown the effectiveness 
of these recognition techniques in quantitative MRI 
data used in the study of Alzheimer’s disease (Li et al., 
2014). To the best of our knowledge, the use of pattern 
recognition in quantitative neuroimaging data from 
patients with MS has not been reported in the literature. 

This approach should provide new information on how 
the classification of data can help in the diagnosis and 
treatment of MS, from quantitative techniques that 
allow measuring microscopic changes not visible in 
conventional images.

The general purpose of this study is to apply pattern 
recognition techniques to quantitative neuroimaging data 
acquired by magnetic resonance imaging in patients, 
especially in patients with Multiple Sclerosis. Previous 
studies have achieved an efficient separation of healthy 
control and patient groups from the neuroimaging data 
in other neurodegenerative diseases. Based on that, three 
are the main questions related to MS to be answered 
in this work: What are the main quantitative variables 
involved in the separation between groups? What are the 
major regions affected by the disease according to the 
classification tools? Are these major regions consistent 
with those recognized in the previous literature?

Methods
This study was approved by the ethics committee 

of the Clinics Hospital – Ribeirão Preto Medical 
School (process #14124-15). Data from 144 clinically 
confirmed MS patients and 203 subjects with no detected 
neurological abnormalities, control subjects (CS), 
were used retrospectively. Images were acquired on a 
3T magnetic resonance scanner (Achieva, Philips) from 
2008 to 2014. Age interval was from 7 to 65 years for 
both groups (Table 1).

A survey was performed on the MRI reports of the 
MS patients to find out the severity of the disease in each 
case. The results were divided according to the degree 
of destructibility of the MS lesions: low, moderate and 
high. Among the MS patients considered in the sample 
12% had lesions of low destructibility, 32% moderate 
and 56% high. Therefore, our patients sample was mainly 
constituted by individuals with the disease in moderate 
or advanced stage. Images from four MRI acquisitions 
were used: 3D-T1w, Diffusion Tensor Imaging (DTI), 
Magnetization Transfer (MT) and Transverse Relaxometry 
(T2). Detailed information about the selected acquisitions 
can be found in previous publications of our group 
(Carmo, 2014; Diniz et al., 2011). These acquisitions 
were chosen for the extraction of quantitative data with 
morphological and physiological interests, from the 
molecular-cellular to the anatomical-structural levels 

Table 1. Demographic data (Age & Sex) of our casuistic.

Group N
Age (years)

Sex 
(M/F)Interval Average 

(SD)
MS Patients 144 7-65 41.5 (11.6) 44/100
Control Subjects 203 7-65 29.3 (16.2) 108/95
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(Carmo, 2014). We defined 126 labels selected from 
166 labels automatically segmented in the program 
FreeSurfer (version 4.5) (Stevens, 2017) using the 
recon-all function and Atlas Destrieux (Destrieux, 2010) 
in the 3D-T1w data. Our selection was based on the 
quality of the segmentation, avoiding labels attributed 
to very small volumes. Labels with volumes inferior to 
0.2% of the intracranial volume were removed to avoid 
mis-segmented regions. Looking for a data consistency, 
the outliers were also removed considering z-scores less 
than 3. Some bilateral or subdivided brain regions were 
joined to one label to reach relative volumes superior 
to 0.2% (Table 2).

From the 3D-T1w data, cortical thickness and 
volume of each label were also extracted in FreeSurfer. 
Total intracranial volume of each individual was used 
to normalize the volumes in order to reduce the head 
size effect. From DTI data, fractional anisotropy (FA), 
mean diffusivity (MD), parallel diffusivity (PaD) and 
perpendicular diffusivity (PeD) maps generated on 
the scanner were used measurements. From MT and 
T2 acquisitions, Magnetization Transfer Ratio (MTR) 
and Transverse Relaxation Time (T2) maps were 
also generated, respectively, using locally developed 
functions based on MINC tools (Diniz et al., 2011). 
Quantitative information was extracted from each map 
and previously segmented 3D-T1w images (Figure 1). 
FA, MD, PeD and PaD data were only analyzed in white 
matter structures (58 labels). Cortical thickness was only 
evaluated in cortical regions with predominance of gray 
matter (52 labels). Other measurements were extracted 
in all the regions (Destrieux, 2010) (Table 2). All these 
measures defined the attributes of the characteristic 
vector for each subject.

The WEKA: Data Mining Software in Java 
(version 3.6.11) was used in mining and supervised 
classification tasks. The KNN classifier implemented in 
this program was chosen for its simplicity and robustness. 
Other classifiers might be could be more efficient, 
but a computational optimization of the classification 
procedure was not our main goal. Figure 1 shows the 
general flowchart of the procedure performed for the 
classification tasks.

In order to assess the relevance of each attribute 
(region plus technique); a previous selection of best 
attributes (BA) was performed with the attribute evaluator 
WrapperSubsetEval implemented in WEKA software. 
Different numbers of neighbors were considered in the 
KNN algorithm (1, 3 and 5 neighbors) looking to make 
independent the indication of the best attributes and the 
classification algorithm properties. An attribute ranking 
was performed considering the number of attribute 
indications among the five best attributes in each KNN 
algorithm using the global characteristic vector. Finally, 
the best attributes were selected looking for this ranking. 
To estimate the labels (cerebral regions) more involved 
in the classification procedure, a similar approach was 
followed but including the individual data of each 
technique. In this case, the ranking was performed counting 
the number of indications of each label disregarding 
the technique (for example: wm_corpus callosum 
was indicated several times in different techniques in 
the folllowing attributes: FA_ wm_corpus callosum, 
MTR_ wm_corpus callosum, MD_wm_corpus callosum, 
PaD_wm_corpus callosum). In order to quantify the 
relevance of each brain region, a percentage value was 
calculated considering all the possible indications as 
best attribute, because some labels are not contained 
in all the techniques.

Table 2. Attributes joined to reach average volumes greater than 0.2%.

Previous Attributes Later Attribute
lh-caudalanteriorcingulate rh-caudalanteriorcingulate caudalanteriorcingulate

lh-entorhinal rh-entorhinal Entorhinal
lh-isthmuscingulate rh-isthmuscingulate isthmuscingulate
lh-parahippocampal rh-parahippocampal parahippocampal

lh-parsorbitalis rh-parsorbitalis Parsorbitalis
lh-pericalcarine rh-pericalcarine Pericalcarine

lh-rostralanteriorcingulate rh-rostralanteriorcingulate rostralanteriorcingulate
lh-temporalpole rh-temporalpole Temporalpole

wm_lh_caudalanteriorcingulate wm_rh_caudalanteriorcingulate wm_caudalanteriorcingulate
wm_lh_corpuscallosum wm_rh_corpuscallosum wm_corpuscallosum

wm_lh_cuneus wm_rh_cuneus wm_cuneus
wm_lh_parahippocampal wm_rh_parahippocampal wm_parahippocampal

wm_lh_rostralanteriorcingulate wm_rh_rostralanteriorcingulate wm_rostralanteriorcingulate
Left-Pallidum Right-Pallidum Pallidum
Left-Amygdala Right-Amygdala Amygdala

CC_Posterior, Mid_Posterior, Anterior, Central and Mid_Anterior wm_corpuscallosum
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In order to identify the most relevant techniques 
for the classification procedure, two attributes selection 
strategies were followed: 1-Considering as attributes 
the individual data of each technique, 2-Using a 
global characteristics vector containing data of all the 
techniques. In this evaluation, the area under the ROC 
(Receiver Operating Characteristic) curve was the main 
parameter in the analysis. This area is estimated from 
the values of sensitivity and specificity in the confusion 
matrix. The number of instances changed for each 
classification because different subjects underwent 
different MRI acquisitions and some acquisitions were 
removed by quality assurance reasons.

Additionally, age and class (patient / control, to be 
only used in the training procedure) attributes were added 
in each vector of characteristics (Table 3). Age attribute 
was included to check its influence in the classification 
process due to the slight unbalance of the age between 
groups. Class attribute is necessary in the training 
procedure. To show the efficiency of the pre-selection 
of attributes, the same classifications were performed 
without considering this pre-selection (here called AA, 
all attributes). Figure 2 summarizes the classification 
tasks that were performed.

A final classification was made restricting to 53 the 
number of brain regions involved (Destrieux, 2010) 
(Table 2). This classification was considering the 
previous findings of the literature based on parametric 
statistics (Santos, 2007) and the clinical indication of 
a neuroradiologist with more than 25 years of clinical 
experience (A.C.S.). This restricted classification was 

Figure 1. Flowchart of the procedure performed for the classification tasks from the MRI acquisitions to the efficiency assessment.

Table 3. Number of instances in the classifications considering the data 
of the individual and joint techniques.

Data Control 
Subjects

MS 
Patients Matrix

FA (Dimensionless) 75 90 165 x 60
MD (mm2/s) 75 90 165 x 60
PaD (mm2/s) 76 90 166 x 60
PeD (mm2/s) 76 90 166 x 60
CT (mm) 167 144 311 x 54
MTR (%) 91 109 200 x 28
T2 (ms) 90 108 198 x 128
VOL (%) 165 138 303 x 128
GLO 53 64 117 x 664
Fractional Anisotropy (FA), Mean Diffusivity (MD), Parallel Diffusivity (PaD), 
Perpendicular Diffusivity (PeD), Cortical Thickness (CT), Magnetization 
Transfer Ratio (MTR), Transverse Relaxation Time (T2), Volumetry (VOL) 
and Global (GLO). The physical units are indicated in parentheses.
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also performed following the flowchart presented in 
Figure 1 with the same subjects, but using only five 
neighbors in the KNN algorithm (KNN5). Classifications 
with all labels and reduced number of labels, here 
called main (MC) and restricted (RC), respectively, 
were finally compared taking into account the area 
under the ROC curve (AUC). In this comparison, only 
the KNN5 algorithm with and without pre-selection of 
better attributes was considered.

Results

Two attributes were the most indicated in the 
previous selection of better attributes in the separation 
of CS and MS patients considering all data: VOL wm 
hypointensities and MTR wm corpuscallosum. Figure 3 
shows the mean and standard deviation values of these 
attributes in the data from healthy subjects and MS patients. 

Both attributes showed significant differences between 
groups in an unpaired t test (p <0.001).

Figure 4 shows the labels with the highest percentage 
of indications among the best attributes grouped by 
labels for main and restricted classifications.

As shown in Figure 4, the main and restricted 
rankings had several common regions among the 
five best attributes of each classification. The wm 
corpuscallosum appeared in the top position in both 
classifications (MC: 30% and RC: 36%), being considered 
the region most affected by MS, containing the best 
attributes for class separation. The wm hypointensities 
(MC: 17% and RC: 24%) and left cerebellum white 
matter (MC: 16% and RC: 12%) were highlighted by 
appearing in both classifications. The regions wm lh 
precuneus and wm lh fusiform were not used in RC, 
but appeared in 2nd and 4th positions with 20% and 
17%, respectively, in the MC ranking.

Figure 5 shows the AUROC values of the main 
classification using the KNN5 algorithm, with previous 
selection of attributes and considering the techniques 
separately and together. The choice of the algorithm 
with five neighbors was due to the better results when 
compared to those obtained with a smaller number of 
neighbors. As expected, the overall vector presented 
the highest percentages of AUROC reaching 97.1%. 
In addition, according to the graph, the quantitative 

Figure 2. Representative scheme of classification tasks performed 
indicating the data and algorithms considered in each classification.

Figure 3. Mean values of the best attributes obtained in the attribute 
pre-selection considering the global vector in the control and patient 
groups. The standard deviation values are also indicated in the graph. 
The vertical axis should be viewed with caution, since each attribute 
indicates values with different meanings.

Figure 4. Labels with the highest number of nominations among the five 
best attributes in the main and restricted classifications.

Figure 5. Areas under the ROC curve in the classifications with attribute 
pre-selection considering different input data in the main classification 
and using the KNN5 algorithm.
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technique with inferior performance in this classification 
was the perpendicular diffusibility with values below 90% 
and the best quantitative technique was the magnetization 
transfer reaching 96%.

Table 4 shows the accuracy values obtained in the 
different classifications using the KNN5 algorithm. 
As expected, the results followed the same trend as the 
AUROC values in the main classification (Figure 6) 
considering the quantitative data involved. Additionally, 
a quantitative AUROC improvement (2-10%) can be 
observed with the use of the best attributes (BA). In general, 
the mean accuracy values of the main classification were 
slightly higher than those for the restricted classification; 
however, the difference was small, showing equivalence 
between both classifications (MC and RC).

Discussion
From the data provided by all techniques, the best 

attributes for the identification of MS patients were: 
VOL wm hypointensities and MTR wm corpuscallosum 
(Figure 3). In the VOL wm_hypointensities attribute the 
mean difference in normalized volume between MS and 
CN patients reached 0.60%, being a strong indicator 
of the difference between groups (Figure 3). The high 
standard deviation of the wm_hypointensities label in 
patients (0.51%) suggests individuals at different stages 
of the disease. This specific label does not represent 
an anatomical region in the FreeSurfer segmentation 
but non-specific areas in the white matter, possibly 
representative of demyelinating lesions. Hence, this 
label could be used as an initial guess in a MS lesion 
segmentation tool.

The corpus callosum is the cerebral structure with 
the highest concentration of inter-hemispheric axonal 
fibers. Integrity of the axonal fibers can be evaluated from 
MTR values. Reduced values of MTR in patients are a 
consequence of the demyelination process (Harrison et al., 
2013). In our case, MTR in corpus callosum present 
a reduced value in patients, as expected. It should be 
noted that the use of parametric statistics would reveal 
differences between patients and healthy controls in 
several attributes, which hinders the interpretation of 
the results, even more because of their multifactorial 
nature. However, the use of machine learning techniques 
helps to identify the key cerebral regions and quantitative 
techniques related to the disease.

In order to find the main regions affected by the 
disease according to the classification tools, the attributes 
pre-selection results were grouped by regions independently 
of the quantitative technique involved (Figure 4). The corpus 
callosum region and wm_hypointensities label were the 
most frequent areas (above 20%) in the selection of the 
best attributes in the restricted classification. Another 
region indicated as a relevant region was the white 
matter in the left cerebellum; this region had previously 
been reported with significant alterations in MS patients 
(Reuter et al., 2009).

Two additional WM regions were highlighted in 
the main classification: left precuneus and left fusiform 
(Figure 4). These areas have not been frequently reported 
in MS patient’s studies. In general, labels located in 
different and distant areas of the white matter were 
indicated as more relevant regions in the discrimination 
process between healthy individuals and patients with 
MS. Figure 6 shows the anatomical regions most involved 
in the selection of the best attributes in the separation 
between patients and controls, highlighting the non-focal 
nature of the disease.

Figure 6. 3D model of the brain indicating the location of the four most 
indicated regions among the best attributes in the main classification. 

Table 4. Accuracy values (%) for the main (all regions) and restricted 
(selected regions) classifications using KNN5 and considering different 
input data with (Best attributes) and without (All attributes) pre-selection 
of attributes. 

Classification All regions Selected regions

Attributes All Best All Best
GLO 84.6 95.7 83.8 93.2
MTR 81.0 88.0 83.0 87.0
VOL 82.2 87.5 84.8 91.7
CT 81.7 85.2 76.5 77.8
T2 75.8 86.9 78.3 81.8
FA 82.4 84.8 70.3 84.8
MD 80.6 84.2 80.6 86.1
PaD 77.1 81.3 69.3 81.3
PeD 79.5 81.3 76.5 85.5

Global (GLO), Magnetization Transfer Ratio (MTR), Volumetry (VOL), 
Cortical Thickness (CT), Transverse Relaxation Time (T2), Fractional 
Anisotropy (FA), Mean Diffusivity (MD), Parallel Diffusivity (PaD) and 
Perpendicular Diffusivity (PeD). 
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There are currently a large number of quantitative 
MRI techniques available. Thus, when defining a research 
protocol for the study of a certain disease, it is extremely 
important to define a priori the most relevant techniques 
for the clinical question in order to save resources and 
reduce patient’s time in the scanner. Our results indicate 
that the use of the magnetization transfer technique 
presents advantages when compared to the results of 
the other techniques in the identification of MS patients 
(Figure 5). The classification problem using these data can 
be consider an easy problem for the algorithm, because 
even using only diffusion-weighted images AUROC 
value exceeds 86%. This fact does not indicate that the 
quantitative changes can be visually detected for two 
main reasons: the radiologist often does not have access 
to all the quantitative maps and the number of regions 
to be evaluated is very high.

As expected, the combined use of all techniques 
resulted in an excellent 98% AUROC using KNN5 
combined with a pre-selection of attributes. Considering 
the accuracy instead AUROC as a comparison metric, 
the results between the techniques are almost identical 
(second column Table 4). In this case, the use of all 
quantitative neuroimaging results allowed an accuracy 
of 95.7%. All these results confirm that the use of the 
machine learning tool in these data is a great alternative 
in the classification of MS patients for medical training 
purposes. This tool can be used to train medical residents 
in the identification of MS patients. The problem may 
be relatively easy for an experienced radiologist, but 
not for a student.

From Table 4, it can be noticed that there is a 
significant reduction of accuracy when a pre-selection 
of attributes is not made. On the other hand, the use of 
a restricted classification considering less brain areas 
brought a slight accuracy decrease, less than 2% in most 
cases, except for the cortical thickness.

The results are different for each technique, according 
to the specifications of each physical phenomenon and 
the errors involved in the estimation of each quantitative 
parameter. In general, the white matter regions have a 
reduction in the MTR (Figure 3) and FA values, and an 
increase in the diffusion coefficients (MD, PaD and PeD) 
in the patient group. The above findings are indicative of 
the well-known myelinic damage in several WM regions 
(Filippi et al., 2017; Kritas et al., 2014; Papathanasiou et al., 
2017; Reuter et al., 2009; Santos, 2007; Vollmer et al., 
2015). By other hand, our common finding in gray 
matter regions of the patients was the increase of the 
atrophy of cortical and subcortical structures, also in 
agreement with previous reports (Narayana et al., 2012; 
Steenwijk et al., 2016). T2 increase was observed in 
structures containing white and gray matter, but it was 
predominant and diffuse in the white matter, similar 

to a previous report (Neema et al., 2009). Reduction 
of MTR values in patients means demyelination and 
axonal injury in WM and plasma membrane loss 
in GM (Kucharczyk et al., 1994). The presence of 
demyelinating lesions modifies the proportions of free 
and bound water influencing the magnetization transfer 
mechanism. WM regions showed a widespread MTR 
reduction; however, some GM regions also showed 
changes in MS patients, as reported by Cercignani and 
collaborators (Cercignani et al., 2001). In our study, 
classification techniques identified left hippocampus 
as a predominantly GM region with relevant variations 
in MTR values.

Water diffusion is affected by the properties of the 
medium where the molecular movement occurs; hence, 
the diffusion measurements in the biological tissues 
provide information on the structures of the tissues. 
Water movement can be hampered by the presence 
of structural barriers at cellular levels. Pathological 
processes can alter the organization of tissue, causing 
abnormalities in water diffusion (Filippi et al., 2001). 
The classification results considering diffusion data 
are in agreement with the expected results. FA values 
were higher in CS than in the MS group, indicating loss 
of the axonal integrity in WM regions. The values of 
diffusibility showed an inverse behavior, i.e., highest 
values for MS patients. Pathological elements of MS 
have the potential to alter the permeability or geometry 
of structural barriers to the molecular diffusion of water 
in the brain (Filippi et al., 2001). The accumulation of 
inflammatory cells and the decomposition of myelin 
products could potentially restrict water diffusion and 
decrease fractional anisotropy because of the presence of 
diffusion barriers. WM regions are the areas most affected 
by MS, possibly causing diffuse hyperplasia, uneven 
edema, perivascular infiltration, gliosis, abnormally thin 
myelin and axonal loss (Filippi et al., 2001). Diffusion 
changes in WM are expected in a widespread way, but tend 
to be more severe in places such as periventricular areas 
and WM of the frontal lobe (Filippi et al., 2001). In our 
study, diffusion changes were also found in the frontal 
lobe of the WM, as expressed by the mean values of FA 
(lh medial and frontal hemispheres: MS 0.28 mm2/s, CS 
0.31 mm2/s), PaD (lh medial and frontal hemispheres: 
MS 0,92 mm2/s, CS 0.83 mm2/s) and PeD (lh lateral 
orbito frontal: MS 0.70 mm2/s, CS 0.65 mm2/s).

Our results indicate a reduced mean cortical thickness 
in all considered cortical structures in MS patients 
when compared to healthy individuals, suggestive of a 
volume atrophy of the cortex due to MS progression, in 
agreement to a previous study (Sailer et al., 2003). Focal 
thinning was also observed in frontal (left precentral: 
MS 2.45 mm, CS 2.55 mm) and temporal regions 
(left fusiform: MS 2.65 mm, CS 2.95 mm). Increased 
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lesion volume causes irreversible tissue loss leading to 
neuronal loss with axonal transection and subsequent 
axonal injury of cortical neurons in multiple sclerosis 
(Sailer et al., 2003).

Considering the volume variations, we did not find a 
significant volume loss rate compared to normal aging, 
as concluded by a recent meta-analysis (Vollmer et al., 
2015). Our volume results indicate focal losses in 
some structures, e.g. left lateraloccipital: MS 0.73%, 
CS 0.94% and right ventral: MS 0.27%, CS 0.31%. 
Some authors suggest that the most pronounced decrease 
in the volume of the brain of MS patients occurs in 
the early phase of the disease, where there is a higher 
inflammatory level of the disease. In our sample, only 
12% of the patients were in an initial phase, it may be 
for this reason that volumetry was not indicated as the 
best individual technique, although its accuracy is more 
than 87% (Table 4).

Our T2 results indicate that lesions caused by MS 
increased the concentration of water in the tissues 
suggesting the presence of edema, demyelination, gliosis 
or axional dysfunctions. A previous study (Neema et al., 
2009) indicated T2 prolongation in MS compared to 
CS in the whole brain, frontal normal-appearing white 
matter (NAWM), parietal NAWM and callosal genu. 
Our study corroborated these findings, because the 
corpus callosum and left fusiform were chosen among 
the regions having the best attributes. In general, our 
findings suggest a substantial loss of the axonal fibers 
of the corpus callosum in a patient with MS.

In summary, the use of MTR, structural morphometry, 
relaxometry and diffusion data combined with a simple 
classification algorithm (KNN) allowed the definition of 
a classification strategy with more than 95% accuracy 
in the separation of MS patients and healthy subjects. 
According to our results, the quantitative technique with 
the highest discrimination power was the MT and diffusion 
weighted imaging obtained the lowest results, particularly 
the perpendicular diffusibility parameter. Consistent with 
the literature, our findings confirm reduction of MTR, 
volume, cortical thickness, FA, and diffusivity; but an 
increase in the T2 values in several areas of the patients’ 
brains (Filippi et al., 2017). In general, the techniques 
showed that MS causes: demyelination, WM lesions, 
edema, axonal loss, gliosis and loss of brain volume.

Our results reinforce the idea that different regions 
of the brain are affected by MS, especially in WM. 
Although, the changes are diffuse, with some specific 
regions more involved in the subject’s classification: 
corpus callosum, left cerebellum, left precuneus and left 
fusiform. These two latter areas had not been described 
as being particularly affected by the disease, but the use 
of pattern recognition techniques helped to identify them. 
Classification techniques proved to be a suitable tool 

for discrimination between healthy individuals and MS 
patients, also indicating the best attributes resulting from 
quantitative evaluations, being consistent with expected 
results from the pathophysiology of the disease.
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