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Introduction
Although the use of sign language is very popular 

among deaf people, other non-hearing-impaired 
communities do not even try to learn it, causing isolation 
of deaf people. Developing a system to translate sign 
language would be a helpful solution to this problem. 
Deaf communities of each country have different sign 
languages. Even countries with the same language may 
have different sign languages. For example, Brazil and 
Portugal have the same oral language, the Portuguese; 

nevertheless, the deaf communities of each country have 
their own sign language, Brazilian Sign Language –Libras 
and Portuguese Gesture Language – LGP, respectively.

In the first studies of gesture recognition 2D images, 
obtained with conventional cameras, were used. With 2D 
images, some approaches were used to facilitate hand 
segmentation. In some of the earliest works (Al-Jarrah 
and Halawani, 2001; Carneiro et al., 2009; Neris et al., 
2008; Pizzolato et al., 2010), the authors employed images 
with a homogeneous background, of white or black color. 
In a second approach, the authors Bragatto et al. (2006), 
and Maraqa et al. (2012) employed colorful gloves. More 
recently, depth maps obtained with Kinect-like depth 
sensors have also been used for hand gesture recognition 
(Dong et al., 2015; Lee et al., 2016; Rakun et al., 2013; 
Silva et al., 2013). The gesture segmentation with depth 
maps is supposed to be independent of scene illumination 
and background.

Dong et al. (2015) developed a recognition method 
for 24 American Sign Language Alphabet (excluding the 
dynamic signs “j” and “z”). Their approach comprised 
the following steps: 1) pixels classification of Kinect 
depth image as belonging to hand or background, 
using a random forest classifier. The hand was divided 
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in 11 regions; 2) finger joints identification using the 
mean-shift local mode-seeking algorithm. This algorithm 
estimates the mass center of probability distributions of 
each hand region; 3) the hand gesture is then classified 
using a 13-feature joint vector as input of random forest 
classifier. The best accuracy obtained in the recognition 
task was 90%.

Silva et al. (2013) also employed the Kinect sensor 
for building a database of the 26 alphabet symbols of 
American Signal Language. For the pattern recognition 
task, the authors employed a template matching technique. 
With template matching, the authors do not present 
feature vectors. The main contribution of the paper is the 
evaluation and discussion of some comparison metrics 
between two templates. The best accuracy obtained in 
the recognition task is 99.03%.

In the method proposed by Dong et al. (2015) 
the main difficult is to obtain the finger joint angles. 
This contributes to the low accuracy presented. While 
the proposed method by Silva et al. (2013) requires a 
perfect alignment between two templates. For accomplish 
this task, the templates had to be obtained at the 
same distance from Kinect and at the same position. 
The method just presented in this paper overcomes these 
two limitations. Additionally, both papers recognized 
a sequence of alphabet letters. It must be emphasized 
that deaf people only use finger spelling, to represent 
given names, acronyms or some technical or specialized 
vocabulary. Differently, in this paper we recognize hand 
gestures used in Brazilian Sign Language.

Rakun et al. (2013) extracted three features: hand 
shape, hand position and movement direction from 
Kinect depth image. For recognition task, the Random 
Forest classifier and the Generalized Learned Vector 
Quantization (GLVQ) were employed. The authors 
used three recognition approaches, tested with a 
10 words dataset of Indonesian sign language. The first 
approach uses only hand-shape data. The second one 
uses skeleton data. While the third one, combining the 
previous two approaches, obtained the best result, an 
accuracy of 94.37%.

The study of Lee et al. (2016) adopted a similar 
approach to the study of Rakun et al. (2013). The authors 
also determine the hand-shape, hand position and the 
movement direction from Kinect sensor data. The hand 
position, an important parameter in Taiwanese sign 
language, is determined using skeleton information 
and a decision tree. The hand shape is determined using 
principal component analysis and a Support Vector 
Machine classifier. The movement direction is obtained 
using hidden Markov models. Twelve direction classes 
are used. For deciding the final word recognition, a 
confusion matrix is employed to construct a probabilistic 
matrix. The best accuracy obtained by the authors in 

recognition hand shapes is only 86.94%, and in the 
classification of 25 words, 85.14%.

The studies of Rakun et al. (2013) and Lee et al. 
(2016) adopted a different approach from the two previous 
related studies and from the study just presented in this 
paper. Instead of recognizing language symbols, these 
studies recognize words. Both of them used a limited 
casuistic to validate their methods. The accuracy obtained 
by Lee et al. (2016) in hand shape recognition was only 
86.94%. Furthermore, these two studies do not take into 
account all the phonologic parameters of a hand sign 
language, which are described in the next paragraphs.

Another approach that does not use digital images 
for gesture recognition employs gloves with electrical 
sensors (Mehdi and Khan, 2002; Wang et al., 2006). 
Mehdi and Khan (2002) used seven electrical sensor 
signs: five from the fingers, one to measure the tilt of 
the hand and one to measure the rotation of the hand.

The major gesture recognition studies previously 
published in the literature employ different techniques 
for extracting characteristics: Al-Jarrah and Halawani 
(2001) used radial distances from gesture center to 
gesture border; Peres et al. (2006) employed bit signature; 
Neris et al. (2008) used 22 vectors with 236 coordinates 
corresponding to pixel intensity sums in horizontal and 
vertical directions; Carneiro et al. (2009) cropped the hand 
gesture to a region of 25x25 pixels and Pizzolato et al. 
(2010) extracted Hu invariant moments.

In this paper, we are concerned about the recognition 
of the Libras. According to the Brazilian Institute of 
Statistics and Geography – IBGE (Brazilian population 
census 2010), Brazil’s population of hearing impaired 
people is 9.7 million, about 5% of the total population. 
From this total, about 1.7 million have great difficulty 
hearing, 344,200 are deaf and 7.5 million have some 
hearing impairment. Some previous studies found in the 
literature on Libras (Carneiro et al., 2009; Neris et al., 
2008; Peres et al., 2006; Pizzolato et al., 2010) aim to 
translate only gestures of Portuguese alphabet letters. 
A sequence of alphabet letters – of finger spelling - is 
used by deaf people only to represent given names, 
acronyms or some technical or specialized vocabulary. 
According to Brito (2010), this is a linguistic loan and 
does not solve the communication problem of deaf people. 
Aware that the Libras language is not Portuguese letter 
spelling, many authors have developed studies on the 
phonology of sign language. According to Rossi and 
Rossi, cited by (Anjo, 2013), a sign language gesture is 
formed by combining five phonologic parameters: hand 
configuration, articulation point, orientation, movement 
and facial expression. Following this logical reasoning, 
this study proposes an initial step in developing a full 
recognition system for Libras, the recognition of one of 
these phonologic parameters, the Hand Configuration 
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(HC). HC is considered the main parameter, because it 
is present in almost all signs of Libras.

According to Pimenta and Quadros (2010), Libras 
has 61 HC. These configurations are shown in Figure 1. 
As noted in this figure, Libras has several similar HC. 
For example, some interpretation mistakes could occur 
between the hand configurations 12 and 13 and between 
the hand configurations 34 and 35.

Table 1 shows the main characteristics of studies 
published in the literature about Libras gestures 
recognition. As shown, the classifiers employed different 
techniques: artificial neural networks, self-organized 
maps, learning vector quantization and support vector 
machines. The databases employed varied from 26 images 
to 610 images.

It can be observed that only the study of Porfirio et al. 
(2013) translated all these 61 HC of Libras. In this study, 
the classification features were obtained from 3D mesh 
of the hands associated with features obtained from 2D 
images, corresponding to a frontal and a lateral view of 
the hand. The 2D extracted features were the following: 
seven Hu moments, eight Freeman directions, and 
horizontal and vertical histogram projections. The features 
obtained from 3D mesh are some 3D mesh descriptors. 
The authors claim that these features are scale, rotation 
and translation invariant. The best recognition rate 
obtained by the authors with rank #1 was 86.06%.

The present study aims to recognize the 61 HC of 
Libras. To do this we propose to:

• Develop a gesture recognition method where 
the segmentation step is independent of scene 
illumination and background. To achieve this goal, 
we captured depth maps with a Kinect sensor;

• Implement a powerful method to feature extraction 
that is scale, rotation and translation invariant. 
This goal is accomplished in two steps. First, 
by applying geometrical transformations in the 
original gesture image, and second, by applying 
a dimensionality reduction employing one of two 
techniques: Bidirectional and Bi-dimensional 
Linear Discriminant Analysis (2D)2LDA 
(Noushath et al., 2006) and Bidirectional and 
Bi-dimensional Principal Component Analysis 
(2D)2PCA (Zhang and Zhou, 2005);

• Construct a large and robust database of Libras 
gestures with 12,200 images: 200 images of each 
61-hand gestures, obtained from 10 different 
people.

• Evaluate the performance of two classifiers: the 
novelty classifier (Costa et al., 2013, 2014), and 
the k-Nearest Neighbor classifier (kNN) (Wang, 
2006), using this robust database.

The HC Libras recognition task was subject of two 
dissertations (Santos, 2015; Silva, 2015) supervised 
by two of the authors. Both dissertations used the kNN 
classifier, however, Santos (2015) used (2D)2LDA, 
while Silva (2015) used (2D)2PCA as feature extraction 
technique. In this paper, we compare the results obtained 
in both dissertations with the results obtained with a 
novelty classifier.

The materials and methods section first presents 
the gesture image database built, the LibrasImages, 
explains the geometrical transformations applied in the 
original image and describes the techniques (2D)2LDA 
and (2D)2PCA employed for feature extraction. Finally, 

Figure 1. 61 Hand configurations (HC) for Brazilian Sign Language (Libras).
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we present the two classifiers employed for gesture 
classification. The Results section presents the values 
of the recognition rate for both classifier methods 
and techniques employed in feature extraction step. 
The Discussion section evaluates the performance of 
both classifiers and feature extraction methods, and 
compares this performance with the performance of 
other methods previously published in the literature.

Methods

This section presents the methods implemented at 
each stage of this pattern recognition task, namely: Image 
acquisition; Hand configuration (HC) segmentation; 
Feature extraction, and Classification.

Image acquisition

The image database constructed, called LibrasImages, 
is comprised of 12,200 images. Two hundred images 
were captured for each one of 61 HC of Libras. These 
images were captured from 10 volunteers. To obtain a 
representative group of images, individuals belonging 
to different groups were selected:

• Seven individuals belong to the deaf community 
(deaf individuals, not only hard-of-hearing). 
These seven individuals are teenagers who were 
literate in Libras in childhood);

• Three individuals do not belong to the deaf 
community (they learn Libras two years ago);

• Eight individuals are men, while 2 are women;

• The individuals age ranged from 15 to 25 years.

For each HC frame, two files are generated. The first 
one, obtained by a RGB camera, corresponding to a true 
color image of 640×480 pixels, with a depth resolution 
of 24 bits. It is saved in bmp format. The second one, 
obtained by a depth-sensing camera, corresponding to 
a depth map. It has dimensions of 640×480 elements, 
depth resolution of 11 bits, and is saved in txt format. 
In this study, only depth map is used.

To evaluate whether the feature extraction method is 
scale, rotation, and translation invariant, the following 
set up are assumed: First, the individuals and the Kinect 
are positioned as shown in Figure 2a. The depth range 
obtained with the Kinect is [0.8m-3.5m]. The individuals 
are free to move in the Kinect field of view. Second, to 

Table 1. Summary of studies concerning Libras hand gestures recognition.

Reference Application Materials Segmentation and  
classifier features Classifier Recognition 

rate

Peres et al. 
(2006)

Recognition 
of LIBRAS 
digital 
alphabet  
(26 gestures).

Database: 26 training 
binary images 
Background: not 
applied.

Segmentation: not applied 
Classifier features: Bit 
signatures

Learning Vector 
Quantization

59.6%  
(worst result) 

100%  
(best result)

Neris et al. 
(2008)

Recognition 
of LIBRAS 
digital 
alphabet  
(26 gestures).

Database: 26 images of 
gestures. 
Background: black.

Segmentation: Threshold; 
Classifier features: bits 
signatures (22 vectors with  
236 coordinates corresponding 
to pixels sum in horizontal and 
vertical directions).

Self Organized 
Maps (SOM) 98.9%

Carneiro et al. 
(2009)

Recognition 
of LIBRAS 
digital 
alphabet  
(27 gestures) 
and 10 words.

Database: 45 RGB 
images/gestures 
obtained from 45 
people. They wore a 
black jacket; 
Background: black 
with artificial lighting.

Segmentation: Threshold; 
Classifier features: raw gesture 
image, with 625 pixels of a 
region of 25x25 pixels.

Artificial Neural 
Networks 91.1%

Pizzolato et al. 
(2010)

Recognition 
of LIBRAS 
digital 
alphabet  
(26 gestures).

Database: 50 images/
gesture obtained from  
3 people Images: RGB; 
Background: White 
with artificial lighting.

Segmentation: Threshold in 
YCbCr color space; 77≤Cb≤127 
and 133≤Cr≤173; 
Classifier features: 6 Hu 
invariant moments.

Artificial Neural 
Networks 89.67%

Porfirio et al. 
(2013)

Recognition 
of 61 hand 
configuration 
gestures of 
LIBRAS

Database: 610 image 
pairs obtained from  
5 people.
Background: not cited.

Segmentation: not cited. 
Classifier features: 2D 
features: seven Hu moments, 
eight Freeman directions, 
and horizontal and vertical 
histogram projections. 3D 
features: mesh descriptors.

Support Vector 
Machine

Rank 1: 86.06%; 
Rank 3: 96.83%
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obtain the 200 images of each gesture, captured from 
video frames, the volunteers are free to do the gesture in 
different positions relative to the body (articulation point), 
and to rotate the gesture from 45o to 135o, as shown in 
Figure 2b. Figure 2c shows examples of gesture images. 
The scene illumination is not controlled.

Hand configuration segmentation

The HC segmentation task, illustrated in Figure 3a, 
includes two steps of post processing: size standardization 
and pixels normalization. These steps aim to prepare the 
HC segmented to the next phases, which correspond 
to recognition task (feature extract and classification).

In the first step of Figure 3a, the hand+forearm are 
segmented using a region growing technique. Region 
growing is a procedure that groups pixels into regions 
based on predefined criteria for growth (Gonzalez and 
Woods, 2008). To implement this technique we need 
to set a “seed” point and from this grow region by 
appending to seed point those neighboring pixels that 
have predefined properties similar to the seed. Therefore, 
this technique requires two parameters: a “seed” pixel 
and a similarity criterion. The “seed” pixel is chosen as 
the pixel that is closest to the Kinect sensor. In other 
words, the pixel in the depth map that has the smallest 
value, mind , because the hand is always in front of the body. 
The similarity criteria are: pixels should be appended to 

seed point if they are 8-connected to a seed pixel, and 
the Equation 1 is satisfied:

p mind d T− <  (1)

where:

pd  – Distance from the pixel to the Kinect reference axis;

mind  – Minimum distance from the pixel to the Kinect 
reference axis;
T – Threshold value.

The optimal value of T is obtained varying the 
threshold value from 50mm to 100mm in steps of 10mm 
and evaluating, for all gestures, which one results in the 
best segmentation. This procedure found that the best 
T value is 90mm.

The second step shown in Figure 3a is vertical alignment 
of the hand + forearm. This step is accomplished by a 
rotation of angle β, calculated by Equation 2, where the 
angle orientation θ, shown in this figure, is defined as 
the angle that a line passing through the centroid of the 
hand+forearm, in the direction of the forearm, forms 
with the vertical line. θ value is calculated by Equation 3. 
This alignment operation uses bilinear interpolation 
(Gonzalez and Woods, 2008).

90  β = −θ  (2)

Figure 2. (a) Position of the Kinect relative to the individual, d is the gesture distance to the Kinect; (b) Rotation range of the HC, [45o-135o]; 
(c) Examples of HC images acquired in different hand orientations.
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1,1

2,0 0,2

21
2

arctg
 µ

θ =   µ −µ 
 (3)

where:
1,1µ , 2,0µ  and 0,2µ  – Second order Hu moments.

After the hand+forearm is aligned with the vertical 
direction, the hand segmentation is accomplished in 
the following steps:

1. Obtaining the vertical projection vP  of the 
hand + forearm aligned image. This projection 
is obtained counting the number of pixels in 
each line. vP  is a column vector with Mx1 
dimensions, where M is the number of image 
lines. 

ivP  (with 1 i M< < ) is given by Equation 4.

( ),i P
i

Pv I i j= ∑  (4)

where:
( ),PI i j  – intensity of pixel j in line i (1 or 0)

2. Identifying the line 
maxPvi , corresponding to the 

maximum value of iPv , as shown in Figure 3a.

3. Obtaining the forearm cut line,  ci  using the 
Equation 5. This cut line is shown in Figure 3a.

maxc Pv ii i= + ∆  (5)

where:

1

1 N
i i

iN =
∆ ∆∑=  (6)

i∆  – Experimentally determined for a set of images 
(N=610).

The value of i∆ , calculated by Equation 6, is equal 
to 26.

According to the block diagram of Figure 3a, hand 
segmentation is followed by hand-size standardization 
and pixel normalization. These steps are required as 
a pre-processing to the feature extraction techniques 
used in this study, (2D)2LDA and (2D)2PCA. Hand-size 
standardization is accomplished in two ulterior steps. In the 
first one, the hand is cropped according to the minimum 
rectangle that encases it, as shown in Figure 3a. After, 
the hand is resized to a standard size,   m x n, using bilinear 
interpolation (Gonzalez and Woods, 2008). The values of 
m and n are 135, and 139, respectively. These dimensions 
correspond to the maximum gesture sizes.

As the depth maps are not obtained at the same 
distance of the Kinect, the depth maps of the same HC 
could have different value ranges. To obtain the same 
value range for a given HC depth map, the following 
normalization procedure is adopted: subtract the maximum 
value from the minimum value of a depth map and scale 
the resulting values to the range 0-2047 (11bits).

Figure 3. Segmentation: (a) Block diagram of segmentation and geometrical operations illustrated with example of resultant images of each step, 
where: θ is the orientation angle of the gesture; β is the rotation angle; the forearm cut, 

maxPvi , is the line number corresponding to the higher value 
of vertical projection and ci  corresponds to the forearm cut line. The dimension of HC segmented, MxN, is resized to a standard size m x m; (b) HC 
segmentation examples. The left images show the HC segmented from the forearm. The central images show the HC under segmented from the 
forearm and the right images show the hand over segmented from the forearm.
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Figure 3b shows the most frequently cases found 
in the segmentation process. The left images show the 
hand corrected segmented from the forearm. The  central 
images show the hand under segmented from the forearm, 
and the left images show the hand over segmented from 
the forearm.

Feature extraction
In feature extraction phase, the characteristic matrices, 

C, are obtained from the processed depth maps, ( )A mxn , 
using one of two dimensionality reduction techniques: 
(2D)2LDA and (2D)2PCA. For each technique, four 
dimensions of characteristics matrices are obtained: 5×5, 
10×10, 15×15 or 20×20. Next, these matrices are converted 
to column vectors ([25,1], [100, 1], [225, 1] and [400, 1]). 
Each one of these vectors will be the classifier’s input.

In the sequence, we will describe the two aforementioned 
techniques used for dimensionality reduction of processed 
Libras depth maps.

Technique (2D)2LDA is intended to reduce the 
dimensions of the processed depth map, optimizing the 
separation of the classes (hand configurations). Its origin 
is the method known as Image Matrix-based Linear 
Discriminant Analysis (IMLDA) (Yang et al., 2005) 
which is, in turn, based on the Fisher criteria, applied 
to the matrix that describes the processed depth map, 
A. Let c be the number of standard classes, N  the total 
samples for training, iN  the number of samples of class i, 
( )i
jA  the jth processed depth map of class i with dimension 

   m x n, ( )i
jA  the average of the depth maps of class i, and A 

the total average of the training images. Based on the 
matrices of the images used for training, the scattering 
matrix between classes and the scattering matrix inside 
the class are given respectively by:

( ) ( )
1

1 c T
B i i i

i
S N A A A A

N =
= − −∑  (7)

and

( )( ) ( ) ( )( )
1 1

1 .
iN Tc i i ii

W j j
i j

S A A A A
N = =

= − −∑ ∑  (8)

where BS  and WS  are positive definite.
The generalized Fisher criterion aims to obtain a 

projection H matrix that maximizes the following quotient:

( )
T

B
T

W

H S HH
H S H

∅ =  (9)

The solution of (9) is the matrix 1 2, ,  qH h h h = …  
formed by the eigenvectors of 1

w BS S−  corresponding to 
q largest eigenvalues. Matrix H  is a linear transformer, 
conventionally called projection matrix. On IMLDA, 
making jB A H= , we obtain B with dimension mxq, 
with q n< , which is used to describe image jA  in the 
classification step. IMLDA performs a dimension 

reduction on the horizontal direction of the processed 
depth map’s matrix.

On (2D)2LDA, IMLDA is applied a second time, 
aiming now to reduce the vertical direction of matrix 
B. Applying IMLDA in the vertical direction consists 
of designing the dispersion matrix between class BG  
and the dispersion matrix inside class WG , having as 
input matrices B:

( )( )
1

1 c T
B i i i

i
G N B B B B

N =
= − −∑  (10)

( ) ( )( ) ( ) ( )( )
1 1

1 iN Tc i i i i
W j j

i j
G B B B B

N = =
= − −∑ ∑  (11)

where:

( ) ( )i i
j jB A H=  (12)

( ) ( )i iB A H=  (13)

B AH=  (14)

Afterwards, Fisher’s criterion is applied to optimize 
and obtain the projection matrix 1 2 , , pV v v v = … , which is 
formed by the eigenvectors of 1

w BG G−  corresponding to p 
greatest eigenvalues. Thus, the characteristic matrix C, 
which represents image A in the classification step, is 
obtained for the following transformation:

T TC V B V AHB= =  (15)

where C has dimensions p q× , being much lower than the 
matrix of the processed image A with dimensions m n× .

The technique (2D)2PCA aims at reducing the 
dimensions of the depth map space, optimizing the variance 
of projections in horizontal and vertical directions. Based 
on the matrices of the depth maps used for training the 
classifiers, the dispersion matrix is given by:

( ) ( )
1

1 .  
N T

H i i
i

G A A A A
N =

= − −∑  (16)

To maximize the projections in horizontal, the 
projection matrix [ ]1 2, ,  is employed,    being  dU u u u= …  is employd, being 
formed by the eigenvectors of  HG  corresponding to d 
largest eigenvalues. Matrix U  is a linear transformer, 
conventionally called projection matrix. For a depth 
map A, the projected matrix is B AU=  with dimension 
mxd, with d n< .

Reducing dimensions in vertical direction of matrix 
B consists of building the dispersion matrix VG , given by:

( )( )
1

1 N T
V i i

i
G A A A A

N =
= − −∑  (17)

To maximize the projections in the horizontal direction, 
projection matrix [ ]1 2, ,  is employedrV v v v= …  is employd, being 
formed by the by the eigenvectors of VG  corresponding 
to d largest eigenvalues. Matrix V  is a linear transformer, 
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conventionally called a projection matrix. For image  B, 
the projected matrix is:

T TC V B V AU= =  (18)

where C has dimensions r d× , being much lower than 
the matrix of the original image A with dimensions m n× .

Classification
As classifiers, are used the Novelty classifier and the 

k-Nearest Neighbors (kNN) classifier. In the following, 
we present both of them. The novelty classifier was 
previously proposed in Costa et al. (2013, 2014). In these 
previous studies, its mathematical formulation was 
based on the Gram-Schmidt orthogonalization process. 
In the present study, the mathematical formulation of the 
novelty classifier is based on the pseudo-inverse matrix.

The motivations to use the novelty classifier in 
this study are the higher recognition rates obtained in 
the previous studies and the excellent generalization 
capability, even with a low number of samples in the 
training set (Costa et al., 2013, 2014).

For explaining the novelty classifier, we will first 
explain the novelty filter concept.

Consider a group of vectors { }1 2 m,  ,  , nx x x R… ⊂
forming a base that generates a subspace   nL R⊂ , with 
m<n. An arbitrary vector n  Rx ∈  can be decomposed in two 
components, x̂ and x, where x̂  is a linear combination of 
vectors xk. In other words, x̂ is the orthogonal projection 
of x on subspace L and  x is the orthogonal projection 
of x on a subspace L  ⊥(orthogonal complement of L). 
Figure 4a illustrates the orthogonal projections of x in 
a tridimensional space. It can be shown, through the 
projection theorem, that x is single and has a minimum 
norm. So, x̂ is the best representation of x on subspace L.

The x component of the vector can be thought of as 
the result of an operation of information processing, with 
very interesting properties. It can be assumed that x is the 
residue remaining when the best linear combination of 
the old patterns (base vectors kx ) is adjusted to express 
vector x. So, it is possible to say that x is the new part 
of x that cannot be explained by the “old” patterns. 
This component is named “novelty” and the system that 
extracts this component from x is named the “novelty 
filter”. Vectors base, ,kx , can be understood as the 
memory of the system, while x is a key through which 
information is associatively searched in the memory. 
It can be shown that the decomposition of an arbitrary 
vector   nx R∈  in its orthogonal projections x̂  ∈ L nR⊂  and 

 x ∈  L⊥ can be obtained from a linear transformation, 
using a symmetric matrix P, so:

ˆ .x P x=  (19)

( ).x I P x= −

 (20)

The matrix ( )I P−  is named orthogonal projector 
operator in L and is named novelty filter, as described 
by Kohonen (1989).

Consider a matrix [ ]1 2, , kX x x x= … , with k n< , as  ix
its columns. Suppose that the vectors n

i   x R∈ , 1,2i k= … , 
span the subspace L. As cited above, the decomposition 
of ˆx x x= +  is unique and x can be determined through 
the condition that it is orthogonal to all columns of X . 
In other words:

. 0Tx X =

 (21)

The Penrose solution (Penrose and Todd, 1955) to 
Equation 3 is given by:

( ) .T Tx y I X X += −

 (22)

where:
y is an arbitrary vector with the same dimension of x;
X + is the pseudo-inverse matrix of X .

Using the properties of symmetry and idempotence 
of the pseudo-inverse matrix, it follows that:

( ). . . .T Tx x x I X X y+= −

 (23)

( ). . . . .
TT T Tx x x x y I X X x+= = − 

 (24)

Comparing Equations 23 and 24, it follows that  y x= . 
So x can be written as:

( ). .x I X X x+= −

 (25)

As x is unique, it follows that: I P I .  and X X +− = −  and

P .X X +=  (26)

The novelty classifier training consists of determining 
the novelty filter of each hand configuration of Libras. 
For each HC training set, a novelty filter is designed. 
For a given HC, consider that [ ]1 2 100, , ,X x x x= …  is the set 
of 100 vectors. The P matrix for this HC is calculated 
using Equation 26. Given an HC depth map sample, 
the novelty is calculated using Equation 20. Figure 4b 
illustrates the novelty vector calculation for a  x sample 
of a depth map HC with a training matrix X .

The novelty classifier is constructed using the block 
diagram of Figure 4c. In this figure, there are 61 novelty 
filters, one for each Libras hand configuration. For a 
sample depth map presented at classifier input, are 
calculated 61 novelty vectors ,1 61ix i< < . After the 
calculation of each novelty vector, ix , the vector norm 
is extracted. The 61 novelty filter norms are the inputs 
to a comparator block and the lowest value of vector 
norm is selected. The HC corresponding to the novelty 
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filter that presents the lowest value is the one to which 
sample x belongs.

In this study, the training matrix X  is formed only 
with vectors that are Linearly Independent (LI). In the 
results section, we show the novelty classifier performance 
with different sizes of training matrix, X .

The other classifier used in this study is the 
kNN classifier. For this classifier, which is well known 
in the literature, the value of k is varied from 1 to 15.

For pattern classification, two metrics are employed, 
the Manhattan distance and the Euclidian distance.

Implementation

The simulations were made using a computer with 
Intel(R) Core (TM) i3, 2.0GHz Processor, with 3.0GB 
of RAM, running Matlab 2014.

Results
All the 12,200 depth maps were successfully segmented 

with the method proposed in this paper. Figure 3b shows 
examples of hand segmentation. The cases of under and 
over hand segmentation do not affect the HC recognition 
process, because the main details of a gesture are located 
in the upper part thereof.

The accuracies obtained for gesture classification 
with the novelty classifier and with the kNN classifier 
are shown in Tables 2 and 3, respectively. For the novelty 
classifier, the number of vectors of the 61 training 
matrices, X, is shown in the top line of Table 2. As shown 
in this Table, the maximum number of training vectors 
of training matrix, X, is 86.

For the kNN classifier, the number of neighbors was 
varied from 1 to 15, in steps of 5.

Figure 4. (a) Orthogonal projections of a vector in a subspace L (b) novelty filter concept (c) novelty classifier for the classification of the 61 HC.

Table 2. Accuracy of Novelty Classifier for Libras hand configuration.

Feature 
extraction

Training 
vector size

Accuracy

Mean number of vectors LI* in the training matrix X

10 20 28 36 45 54 63 72 81 86

(2D)2PCA
[100, 1] 72.39 83.81 88.54 90.91 91.45 92.13 90.29 86.62 66.77 40.47
[225, 1] 71.54 83.55 88.07 90.57 92.39 93.95 94.37 94.51 94.75 94.56
[400, 1] 70.15 83.49 88.98 89.09 93.00 93.70 94.74 95.03 95.19 95.41

(2D)2LDA
[100, 1] 62.59 75.62 83.01 85.21 86.39 87.24 84.83 80.56 67.67 46.57
[225, 1] 63.85 77.04 82.57 86.90 87.34 89.69 89.78 90.98 91.08 91.61
[400, 1] 62.59 75.70 81.54 85.68 87.64 89.34 90.18 91.23 92.13 91.96

*LI: linearly independent.
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The main reason for the errors observed in both 
classifiers is the similarity between hand configurations of 
Libras. Table 4 shows mean values of errors observed in 
both classifiers when classifying some hand configurations 
of Libras.

Discussion

The first inference that can be drawn from Table 2 
about the novelty classifier is that the best performance is 
obtained with the (2D)2PCA feature extraction technique, 

Table 4. Mean error values of both classifiers when classifying HC of Libras.

Submitted 
hand 

configuration

Recognized 
hand 

configuration

Mean 
Error 
(%)

Submitted 
hand 

configuration

Recognized 
hand 

configuration

Mean 
Error 
(%)

Submitted 
hand 

configuration

Recognized 
hand 

configuration

Mean 
Error 
(%)

8.0 3.0 8.0

3.0 9.0 7.0

5.0 3.0 6.0

4.0 9.0 4.0

3.0 6.0 7.0

3.0 9.0

Table 3. Accuracy of kNN classifier for Libras hand configuration.

Training 
vector 

size
k-Neighboors

Accuracy

(2D)2LDA (2D)2PCA

Euclidian distance Manhattan distance Euclidian distance Manhattan distance

[25, 1]

1 89.04 92.27 94.98 95.26
5 85.16 88.96 91.95 92.91
10 80.90 85.51 87.44 89.43
15 77.24 82.28 83.87 85.54

[100, 1]

1 92.92 94.47 96.31 96.13
5 89.11 90.44 93.20 93.11
10 84.55 85.90 89.13 88.49
15 80.55 82.14 84.72 84.15

[225, 1]

1 92.14 92.16 95.93 94.57
5 85.16 86.67 92.56 89.34
10 82.96 80.95 88.57 84.07
15 78.62 75.65 84.00 78.97

[400, 1]

1 90.75 87.08 95.82 92.16
5 85.72 78.80 92.41 86.03
10 80.28 71.61 88.16 78.44
15 75.61 64.95 83.59 71.57
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with input vectors of size [225, 1] or [400, 1] and with 
training matrices X  formed by LI vectors in the range 
of 63-86. The best result of the novelty classifier is an 
accuracy of 95.41% and is obtained in the following 
condition: (2D)2PCA feature extraction technique, with 
input vector of size [400, 1] and with training matrices, 
X , formed by 86 LI vectors.

Table 2 also shows that, for the novelty classifier, 
the classification performance obtained varies with 
the mean number of vectors LI in the training matrix. 
For vector size [100,1], performance increases and reaches 
a maximum value with 54 vectors LI, and decreases 
thereafter. With vector sizes [225,1] and [400, 1] the 
classification performance increases continuously from 
a mean number of vectors LI equal to 10 up to 86.

From Table 3, that shows the accuracies of the 
kNN classifier, we can observe that the best performance 
is also obtained with the (2D)2PCA feature extraction 
technique and with input vectors of size [100, 1]. Except 
for k=10, the accuracy reaches maximum values for an 
input vector of size [100, 1], for the Euclidian Distance 
and for k=1. The best result of the kNN classifier is an 
accuracy of 96.31%, which is obtained in the following 
condition: (2D)2PCA feature extraction technique, with 
input vector of size [100, 1], using Euclidian Distance 
and k=1.

We can observe in Table 3 that, for a fixed vector 
size, best values are obtained with a fewer k-neighbors.

The vector that generates the best results with 
novelty classifier has size of [400,1], while with the 
kNN classifier, it has a size of [100,1]. Seemingly, there 
is no apparent reason for this behavior.

From the aforementioned we can say that: a) the 
performance of the novelty classifier and the performance 
of the kNN classifier are similar; b) with both classifiers 
the performance of the (2D)2PCA feature extraction 
technique is better than the performance of the (2D)2LDA 
feature extraction technique.

Although the novelty concept is an old one, the novelty 
classifier concept is new. This classifier has recently 
been used for iris recognition (Costa et al., 2013) and 
for face recognition (Costa et al., 2014). In this study, we 
show the suitability of the novelty classifier for gesture 
recognition, more specifically, for Hand Configurations 
used by the Brazilian-deaf community.

The literature review of Libras hand configuration 
recognition shows that, except for the study of Porfirio et al. 
(2013) the other studies used a controlled background 
(Carneiro et al., 2009; Neris et al., 2008; Pizzolato et al., 
2010). Other studies not on Libras used colorful gloves 
(Bragatto et al., 2006; Maraqa et al., 2012) or gloves with 
sensors (Mehdi and Khan, 2002; Wang et al., 2006), which 
require complex interfaces with the computer system. 
Methods that use depth maps, as the one proposed in this 

study, make a major contribution to this research field, 
since they do not depend on controlled environments 
and do not require complex interfaces with computers, 
neither wearable sensors such as gloves with sensors.

The best gesture recognition accuracy of Libras 
obtained in this study, 96.31%, is much higher than the 
one obtained in (Porfirio et al., 2013), 86.06%. It must 
be emphasized that this recognition rate is obtained for 
different conditions of hand rotation and proximity of 
the depth camera, and with a depth camera resolution 
of only 640×480 pixels. This performance must be 
also credited to the feature extraction technique and to 
the standardization and normalization processes used.

The mean times spent in each phase of the method 
for recognizing a HC are the following: segmentation: 
0.32s; feature extraction: 0.086s and classification: 
0.022s. As observed, the segmentation consumes more 
time than the other phases. It is important remember that 
these mean times were obtained using a computer with 
Intel(R) Core (TM) i3, 2.0GHz Processor, with 3.0GB of 
RAM, running Matlab 2014.

We intend to continue this study in different ways. 
The first one would be to develop tools to recognize other 
Libras phonological parameters, such as face expression. 
The second one would be to improve gesture recognition 
phase accuracy. Although hand configurations were 
captured from a video stream, the volunteers were not 
actually communicating in Libras. They were simply 
performing individual hand configurations. Based on that, 
the third area we would further develop is integrating 
the different phonological parameters and building a full 
Libras translator, probably using convolutional neural 
networks as pattern recognition tool. This research is 
now under way.
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