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Comparative study of periodicity estimation methods using ultrasonic 
signals
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Abstract Introduction: Various signal-processing techniques have been proposed to extract quantitative information 
about internal structures of tissues from the original radio frequency (RF) signals instead of an ultrasound 
image. The quantifiable parameter called the mean scatterer spacing (MSS) can be useful to detect changes in the 
quasi-periodic microstructure of tissues such as the liver or the spleen, using ultrasonic signals.  Methods: We 
evaluate and compare the performance of three classic methods of spectral estimation to calculate the MSS 
without operator intervention: Tufts-Kumaresan, SAC (Spectral Autocorrelation) and MUSIC (MUltiple SIgnal 
Classification). Initially the evaluations were performed with 10,000 signals simulated from a model in which 
the variables of interest are controlled, and then, real signals from sponge phantoms were used.  Results: For 
the simulated signals, the performance of all three methods decreased with increasing Ad or jitter levels. For 
the sponges, none of the methods accurately estimated the pore size.  Conclusion: For the simulated signals, 
Tufts-Kumaresan had the lowest performance, whereas SAC and MUSIC had similar results. For sponges, 
only Tufts-Kumaresan was able to detect the increase in the size of the pores of the sponge, although most 
often, it estimated sizes larger than expected. 
Keywords: Mean spacing, Ultrasonic scatterers, Spectral estimation, Periodic media.

Introduction
Ultrasound is a well-established method of 

medical imaging, which uses non-ionizing radiation 
and has a low cost of implementation. However, 
the ultrasound image is usually interpreted visually 
and qualitatively. Conventional ultrasound images 
(grayscale) are formed from echoes that return from 
the irradiated structures. These images represent 
specular reflections from interfaces between different 
acoustic impedance structures and backscattered 
echoes from the interaction between the ultrasound 
and microstructures. Specular reflections indicate the 
contours of organs, vessels, cysts, and macroscopic 
structures in general, while scattering generates the gray 
granulation (speckle) that fills the interiors of organs 
and tissues. These images provide a visualization of 
anatomical structures in motion in real time, but the 
more subtle changes in tissue microstructure, such 
as the early stages of cirrhosis or fibrosis or fetal 
maturation are difficult to identify visually (Shung 
and Thieme, 1993).

Various signal-processing techniques have been 
proposed to extract quantitative information of internal 
structures of tissues obtained from the original radio 
frequency (RF) signals, such as: acoustic speed (Bamber 
and Hill, 1981; Bouzitoune et al., 2016), backscatter 
coefficient (Bamber and Hill, 1981; Bouzitoune et al., 

2016; Lu et al., 1991), spectral slope (Bouzitoune et al., 
2016) and attenuation coefficient (Bamber and Hill, 
1981; Bouzitoune et al., 2016; Lu et al., 1991) and 
the Mean Scatterer Spacing (MSS).

MSS represents the spatial organization and is 
therefore of particular interest for detecting changes 
in tissue that have quasi-periodic microstructures, 
such as the liver or spleen tissue (Fellingham and 
Sommer, 1984). To this end, various techniques of 
power spectrum and cepstrum (power spectrum of the 
logarithm of the power spectrum) several techniques 
have been proposed for estimating MSS such as the 
ones described by: Fellingham and Sommer (1984), 
Narayanan et al. (1997) and Wear et al. (1993). 
The studies of Varghese and Donohue (1993, 1994, 
1995) were based on spectral autocorrelation, and 
Simon et al. (1997) proposed an algorithm to estimate 
the MSS based on the spectral redundancy generated 
by an RF signal quadratic transformation. All these 
techniques are applied to RF signals or their envelope, 
which contains a mixture of contributions from periodic 
and non-periodic scatterers.

Using human calcanei, Pereira et al. (2004) 
estimated MSS using Singular Spectral Analysis and 
concluded it may be useful for providing information 
associated with tissue microarchitecture. In 2006 
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Machado et al. (2006) studied in vitro the periodicity 
of human liver tissue and found that MSS alone could 
not characterize tissues, concluding that additional 
parameters are needed to improve its accuracy. Also 
using human tissue, Huang et al. (2008) wrote an article 
estimating the mean spacing within trabecular bone 
using a simplified inverse filter-tracking algorithm 
and concluded it has the potential to be a method for 
estimating average spacing in low signal-to-noise 
environments with large spacing variations.

In 2011, Chen et al. (2011) proposed a time-frequency 
approach to estimate the MSS. They used simulated and 
real backscattered echoes of liver tissues in vivo and 
concluded that their method is potentially superior to 
Simon’s (1997), avoiding false peaks in the spectrum. 
More recently, Pan et al. (2015) proposed a Golay 
code-based cepstrum estimation and the results show 
that the method is robust against noise.

Comparing the techniques, Kauati et al. (2012) 
evaluated the Burg, Wiener, and MUSIC (MUltiple 
SIgnal Classification) spectral estimation methods to 
calculate the MSS (without operator intervention). 
Initially the evaluation was performed using 10,000 
simulated signals with the aim of studying each 
method’s behavior using a model in which the variables 
of interest can be controlled. Then, the methods were 
applied to real signals of nylon phantoms immersed in 
water. The Burg method could not estimate the spacing 
of phantom signals, presenting results similar to the 
other methods only for simulated signals. The Wiener 
method for simulated signals was second best in 
terms of percentage of success. When considering 
the phantom signals, the MUSIC method had the 
best performance of all three methods.

In this work, we will compare the MUSIC method, 
which had the best performance in Kauati et al. 
(2012), with two other methods also used to estimate 
periodicity: Tufts-Kumaresan and SAC (Spectral 
Autocorrelation).

Methods
In this section, the equations and algorithms of 

the MUSIC, Tufts-Kumaresan and SAC methods 
will be presented. The study was initially performed 
using simulated ultrasonic (US) signals based on 
a linear model of US interaction with biological 
tissue, in order to have more control of the variables 
involved. Then, we used real signals from sponge 
phantoms immersed in water. Examples of both 
kinds of signals (simulated and real) will also be 
presented. The approaches used to evaluate the 
methods, the phantoms used to generate the real 

signals, and the signal treatments proposed in this 
work will be described at the end of this section.

Supporting methods

Tufts-Kumaresan

Based on modified covariance, Tufts and Kumaresan 
(1982) determined a prediction filter of N samples 
in the forward and backward directions, and the 
prediction equations can be written in matrix form as:
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where, y(n): input signal; g: filter impulse response; 
L: predictor filter order; N: number of samples. 
In other words,

Ag = –h  (2)

where, A: matrix formed by the input signal; h: vector 
formed by the input signal.

Thus, g is given by

g = –A#h  (3)

where, A#: pseudoinverse of A#.
The correlation matrix R can be calculated by:

R = A * A  (4)

Where, * is the transpose of the complex conjugate.
The correlation vector is defined by

r = A * h  (5)

and the prediction filter g can be calculated as

g = R#r  (6)

The Tufts-Kumaresan filter is defined as

gtk = [1 g]  (7)

The filter order is crucial to the frequency estimation 
performance. According to Tufts and Kumaresan (1982) 
the best order is defined by the window size minus the 
number of periodicities in the signal divided by two.

The Tufts-Kumaresan method, with values of 
example parameters, is presented below. The size 
of the window was defined according to Tufts and 
Kumaresan (1982) and experimentally confirmed using 
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a few windows of different sizes and by checking 
which one had the best result.

1. Given:
• window size = 200 points.
• number of periodicities = 1
• order of the filter = window size - number 

of periodicities
• overlap = half of the window size

2. Thus, for each window, we calculate the matrix 
A and h, according to Equation 1, for the RF 
signal envelope.

3. The vector g will be calculated for each window 
as: #( * ) ( * )g A A A h= −

4. At the end, we calculate the average of g with 
all windows

5. From the filter gtk frequency response, we 
can find the frequency within the specified 
window that presents the largest amplitude 
value. This will be the requested frequency 
(Figure 1A).

SAC

The SAC (Spectral Autocorrelation) method 
performs an analysis on the spectrum calculated by:

*
1 2 1 2( , ) ( ). ( )S f f Y f Y f=   (8)

being:
( )Y f = Fourier transform of the envelope RF signal

*( )Y f = Conjugate of the Fourier transform of the 
envelope RF signal

The relative frequency of the mean spacing of 
regular scatterers is determined by the off-diagonal 
dominant peak, which is equivalent to the PSD. 
The analysis outside the main diagonal was used, 
because according to Varghese and Donohue (1993), 
the expected value of diffuse component is zero in 
this region.

The steps for the implementation of SAC method 
can be summarized as follows:

1. Calculate the FFT of the envelope of the RF 
signal and its conjugate.

2. Calculate the product of both of them 
(Equation 8).

3. Normalize through the main diagonal.
4. Remove the main diagonal.
5.  The frequency related to the position of 

maximum amplitude in the spectrum is the 
one related to MSS (Figure 1B).

Figure 1. Example of application of methods, with simulated signal of center frequency of 3.5 MHz, sampling frequency of 25 MHz, 
and signal window of 512 points. (A) Tufts-Kumaresan (the estimated FreqMSS was 610.35 kHz); (B) SAC (the estimated FreqMSS was 
610.35 kHz) and (C) MUSIC (the estimated FreqMSS was 611.55 kHz).
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MUSIC

The MUSIC (MUltiple SIgnal Classification) 
method (Marple, 1987) is based on obtaining the 
matrix eigenvalues and eigenvectors formed by 
covariances according to equation:
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where, c (i) = matrix elements; Y = original signal.
From a generic estimator of frequencies:
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being, ak = eigenvector; eH = eigenvector hermitian 
transposed; αk = weight.

The estimator of frequencies of MUSIC is based 
on the noise subspace eigenvectors with uniform 
weight, so the frequency regarding the mean spacing 
of scatterers is defined by the point of maximum 
amplitude in the MUSIC spectrum.
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where ( )e f  is a vector formed by:
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where, T is half the period limited by the analysis 
window for M eigenvectors forming the signal space.

The steps for the MUSIC method implementation 
can be summarized as follows:

1. Draw the MUSIC spectrum according to 
Equation 11, considering the RF signal 
envelope.

2. The frequency related to the position of 
maximum amplitude in the spectrum is the 
one related to MSS. (Figure 1C).

Signals used in the analysis

Simulated tissue

The RF signals simulated in this study followed 
the model used by Maciel (2000) of backscattered 
echoes, considering a one-dimensional medium and 
linear behavior. Thus, the echo signal received as a 
function of time, r(t), can be written as:

( ) ( )* ( ) ( )r t p t g t n t= +   (13)

where, ( )p t = transmitted ultrasound pulse; ( )g t = function 
of characterization of medium (Impulse Response); 

( )n t = experimental system noise; * = convolution.
The function g(t) can be modeled as the sum of 

echoes scattered by each mediumparticle where a 
group of particles has a regular spatial distribution 
(periodic) and the other group has an irregular 
distribution (aperiodic):

( ) ( ) ( )
1 1

N M
i i i i

i i
g t c t b t

= =
= δ − τ + δ − θ∑ ∑   (14)

where: N = total number of regular particles; M = total 
number of dispersed particles; ic  = regular signal 
amplitude; iτ  = regular part delay (regarding the 
position); ib  = dispersed signal; iθ = dispersed part 
delay (regarding the position); δ =  impulse function.

This model is compatible with biological tissues 
that have regular structures mixed with diffuse ones, 
such as liver tissue, and is similar to the ones found 
in the literature.

Evaluation
First, the methods were evaluated using 

10,000 signals simulated with different levels of Ad 
(the ratio between the echoes’ mean amplitudes from 
the diffuse and regular particles) and jitter (percentile 
variance of mean space between the regularly spaced 
particles). The signals were divided into 20 groups 
of 500, according to the characteristics in Table 1. 
The sampling frequency was 25 MHz, the transducer 
excitation frequency was 20 MHz, and the excitation 
signal band was 1.5 MHz.

The signals were simulated with MSS = 1.25 mm 
(compatible with the biological tissues), whose 
frequency related to periodicity (FreqMSS) is calculated 
according to the following equation:

2
cFreqMSS
MSS

=
⋅

  (15)

where, FreqMSS = frequency of maximum magnitude; 
c = ultrasound velocity; MSS  = mean scatterer spacing.

Figure 2 shows signal sections: (A) Ad = 11.7% 
and jitter = 1%, (B) Ad = 11.7% and jitter = 30%, and 
(C) Ad = 76.5% and jitter = 1%. It can be seen that 
the intervals become progressively more difficult to 
be visually identified.

Sponge phantom
After simulating signals we used a sponge phantom 

signals. The experiment was conducted by immersing 
the sponges in water. We used a transducer with a 

237Res. Biomed. Eng. 2016 September; 32(3): 234-242



Kauati A, Pereira WCA, Campos MLR

central frequency and bandwidth of 20 MHz to acquire 
the backscattered RF signals. The sponges were 
placed with the surface parallel to the scanning plan 
(Figure 3). The amplified RF signal was scanned with 
an 8-bit resolution oscilloscope (details on Table 2) 
(Pereira et al., 2002).

Figure 4 shows a section of each sponge signal 
with different spacing. Each of the 176 signals for each 
sponge was reduced to 512 points, a size sufficient to 
identify frequencies of the expected order of magnitude.

Signal treatment
To evaluate the three methods, all the signals were 

filtered by a Butterworth filter of order 6, with cutoff 
frequencies related to spacings of 0.02 mm (38.5 MHz) 
to 3.00 mm (256.67 kHz) for sponge signals, and 
0.10 mm (7.70 MHz) to 5.00 mm (154.00 kHz) for the 
simulated signals. Cutoff frequencies were calculated 
for each signal part depending on the estimated US 
speed. For these values, the speed used was 1540 m/s 
(average speed for biological tissues).

Table 1. Characteristics of simulated signals.

Group MSS (mm) Jitter (%) Ad (%) Group MSS (mm) Jitter (%) Ad (%)

1 1.25 1 11.7 11 1.25 10 58.8
2 1.25 1 41.2 12 1.25 10 76.5
3 1.25 1 58.8 13 1.25 20 11.7
4 1.25 1 76.5 14 1.25 20 41.2
5 1.25 5 11.7 15 1.25 20 58.8
6 1.25 5 41.2 16 1.25 20 76.5
7 1.25 5 58.8 17 1.25 30 11.7
8 1.25 5 76.5 18 1.25 30 41.2
9 1.25 10 11.7 19 1.25 30 58.8
10 1.25 10 41.2 20 1.25 30 76.5

Figure 2. Examples of simulated signals with MSS = 1.25mm: (A) Ad = 11.7% and jitter = 1% (B) and Ad = 11.7% and jitter = 30% (C) 
Ad = 76.5% and jitter = 1%.
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As the RF signal envelope has the same properties 
as the RF signal average spacing (Maciel, 2000), the 
analysis was performed only on the envelope so that it 
is more robust in estimating the periodic component. 
The signal envelope was calculated as the analytic 
signal obtained using an RF signal Hilbert transform, 
subtracting the average (to remove the DC level), and 
dividing by the variance for the energy normalization.

Results
For the three methods studied, an initial analysis 

using 10,000 simulated signals with various levels of 
Ad and jitter combined was performed. By using such 
a signal model, it was possible to control the signal 
characteristics independently. Sponges, which mimic 
the almost quasi-periodic spacing of tissues, were 
used to obtain signals closer to real biological tissues.

For the simulated signals, Figure 5 presents the 
results for the percentage of correct estimates for 
different levels of Ad. For each method, different curves 
are presented with a tolerance range of 10% around 
the value of the correct frequency in the simulated 
spacing – in this case, 616.00 kHz, in a medium with 
a US speed of 1.540 m/s. It was observed that for all 
methods the performance decreased with the increase 
of Ad or jitter levels, as expected.

The summarized results for the four phantoms for 
the three methods are presented in Table 3. The mean 
velocity for each sponge was obtained as the estimated 
mean velocity. Their values were 1.494 m/s sponge 

0.1-0.2 mm 1.486 m/s sponge 0.2-0.3 mm, 1.499 m/s 
sponge 0.3-0.5 mm and 1.494 m/s for the sponge of 
0.5 to 1.0 mm (Pereira et al., 2002).

Discussion
For the simulated signals the Tufts-Kumaresan 

method had the lowest performance, whereas SAC 
and MUSIC obtained similar results. It can be noted 
from Figure 5 that each method maintains a reasonable 
precision percentage even when the average amplitude 
of the aperiodic signal is about 40% of the average 
amplitude of the periodic signal (Ad = 41.2%) and 
jitter reached 10%. From this point, performance 
rapidly deteriorates indicating that the frequency is 
no longer evident. It is important to note that for the 
simulated signals, the dominant feature is the use of 
frequencies with greater or lesser amount of associated 
noise. In real cases, there are large isolated reflectors 
and/or highly attenuating structures that generate 
more complex signals.

For sponges, only the Tufts-Kumaresan method 
was able to identify an increase in the size of pores 
(frequency decreases as the size of pores increases), 
although it estimated higher frequencies than expected.

No outlier was excluded, although they clearly 
exist. If there was such an exclusion, the results would 
be closer to the expected values. This technique was 
used by some authors, such as Pereira et al. (2002).

It should be noted that the sponges do not have 
a preferred frequency, but a distribution of unknown 
frequencies. It is also observed that the sponges are 
composed of structures with various shapes and 
thicknesses, which cause a variation in the reflected 
energy that make up the backscattering signal under 
study.

The results with simulated signals show that SAC 
and MUSIC are potential methods to estimate the MSS. 

Figure 3. RF signal acquisition set-up using a commercial transducer (model M316; 3.2-mm diameter, Panametrics, Waltham, MA) with 
central frequency and bandwidth of 20 MHz.

Table 2. The sponge phantom with respective sampling rate.

Sponges Sampling rate
Pores between 0.1 and 0.2 mm 100 MHz
Pores between 0.2 and 0.3 mm 100 MHz
Pores between 0.3 and 0.5 mm 250 MHz
Pores between 0.5 and 1.0 mm 250 MHz

239Res. Biomed. Eng. 2016 September; 32(3): 234-242



Kauati A, Pereira WCA, Campos MLR

Figure 4. Examples of signals of 4 sponge phantoms (A) spacing between 0.1 and 0.2 mm; (B) spacing between 0.2 and 0.3 mm; (C) spacing 
between 0.3 and 0.5 mm and (D) spacing between 0.5 and 1.0 mm.

Figure 5. Results for simulated signals for the methods: (A) Tufts-Kumaresan; (B) SAC; and (C) MUSIC for a range of tolerance of 10% 
around the correct value (616.00 MHz).
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Table 3. Results for four different sponge phantoms for the three methods for a US speed in the medium of 1.494 m/s.

Sponge
phantom Method

Average 
FreqMSS 

(MHz)
Std CV

(%)

Right
Range ± 

10%

Average 
MSS (mm)

0.1-0.2 mm
(3.74-7.47 MHz)

Tufts-Kumaresan 4.56 3.34 73.32 43.75 0.16
SAC 2.74 2.17 78.96 26.14 0.27
MUSIC 2.55 2.05 80.59 23.86 0.29

0.2-0.3 mm
(2.48-3.72 MHz)

Tufts-Kumaresan 4.00 2.54 63.60 38.07 0.19
SAC 3.26 1.54 47.30 46.59 0.23
MUSIC 2.99 1.41 46.95 45.45 0.25

0.3-0.5 mm
(1.50-2.50 MHz)

Tufts-Kumaresan 3.54 2.17 61.11 23.30 0.21
SAC 3.05 1.72 56.43 32.39 0.25
MUSIC 2.92 1.56 53.46 22.73 0.26

0.5-1.0 mm
(0.75-1.50 MHz)

Tufts-Kumaresan 2.40 1.79 74.64 34.66 0.31
SAC 1.78 1.20 67.65 48.86 0.42
MUSIC 1.71 0.97 56.50 38.64 0.44

Regarding sponge phantoms, SAC and MUSIC were 
able to estimate MSS values inside the periodicity range 
for one sponge (2nd sponge), while Tufts-Kumaresan 
estimated values inside the periodicity range only once 
(1st sponge). However, Tufts-Kumaresan was the only 
method able to estimate progressively higher MSS 
values; hence, it was able to sense the increase in the 
pore sizes of the sponges. A more detailed study is 
needed to investigate the sensibility of each method 
and their contour conditions.
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