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Introduction
Diffusion tensor imaging (DTI) is a widely used 

magnetic resonance imaging (MRI) modality for the study 
of microstructural changes in neurological diseases and 
plays an important role in several medical procedures 
(Alexander et al., 2007; Shenton et al., 2012). However, a 
major practical limitation of DTI is due to the low image 
quality, been resultant from imaging acquisition factors 
such as the spatial resolution and the long echo time 
necessary to DTI imaging technique. As a consequence, 

the accuracy of the quantitative indexes estimated 
on DTI image reconstructions, such as the fractional 
anisotropy (FA) and apparent diffusion coefficient (ADC), 
is compromised. In principle, one simple solution to 
improve the image quality in DTI exams is to increase 
the number of images acquired. Thus, the average signal 
should decrease the noise level on the overall image. 
However, this approach is time-consuming, being often 
impractical for the clinical routine.

Another suitable approach to reducing the noise 
influence is the application of computational noise 
attenuation algorithms. In fact, several approaches were 
presented in the literature in order to enhance the general 
DTI image quality. For instance, some of these DTI 
filtering methods are based on MRI noise regularization 
(Aja-Fernandez et al., 2008; Martin-Fernandez et al., 2009; 
Maximov et al., 2012; Tristán-Vega and Aja-Fernández, 
2010), pre-filtering DWI images requested for DTI images 
reconstruction (Martin-Fernandez et al., 2009; Xu et al., 
2010), noise attenuation on k-space (Basu et al., 2006), 
local neighborhood pattern analysis (Manjón et al., 
2008), high-order partial differential equations (Bai and 
Feng, 2007; Moraschi et al., 2010), diffusion tensor 
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modeling (Chen and Hsu, 2005), and image restoration 
(Christiansen et al., 2007; McGraw et al., 2004).

The anisotropic diffusion AD filter approach was 
introduced by Perona and Malik (Perona and Malik, 
1990) and have been intensively applied on several 
medical imaging techniques (Lee et al., 2006; Ling and 
Bovik, 2002; Xu et al., 2010), and recently on DTI 
images (Moraschi et al., 2010). However, the AD filter 
applicability is only robust on specific regions of interest, 
mainly on areas where exist dense fiber concentrations, 
such as the corpus callosum (Moraschi et al., 2010). 
This regional limitation also reveals issues on the 
pericortical brain areas, where the AD filter presents 
higher structural distortions due to the noise influence. 
As reported, the AD filter has lower performance on 
images with both low spatial resolution and high noise 
level (Manjón et al., 2008).

The main limitation given in the AD approach is 
regarding the local voxel interaction, which is restricted 
to a linear power law described by the classical Brownian 
motion. In fact, the AD filter is a Gaussian filter locally 
modulated by tissue boundaries. Perona and Malik 
(Perona and Malik, 1990) proposed a monotonically 
decreasing function which, in general terms, regulates 
the Gaussian variance at each voxel position regarding 
the local image gradient (Perona and Malik, 1990). 
However, the fundamental noise smoothing procedure 
relies on a Gaussian modulation, imposing the classical 
diffusion paradigm for all brain tissues. Several studies 
affirm that the brain environment share characteristic of 
complex systems (Bullmore et al., 2009; Kiselev et al., 
2003), arguing that an anomalous diffusion process 
(ADP) is naturally presented in the neuroanatomical 
organization.

Inspired by ADP properties, the anisotropic anomalous 
diffusion (AAD) filter is a spatial image filtering method, 
which adds the superdiffusion and subdiffusion regimes. 
Similarly, with the AD approach, the AAD filter modulates 
the diffusion behavior based on the local diffusibility 
properties. Although instead of the classical Brownian 
motion assumption, used in AD method, the AAD filter 
applies the ADP defined by the generalized diffusion 
equation (also known as the porous media equation), 
proposed by Tsallis (Senra et al., 2015; Tsallis, 2009). 
Therefore, instead of assuming a linear diffusion, it is 
possible to investigate which type of spatial filtering 
approach is more suitable for diffusion weighted image 
volumes. More details about the AAD filter and concepts 
of anomalous diffusion on digital images are discussed 
in section Anomalous and classic diffusion paradigm.

In this study, the overall image quality enhancement 
in quantitative maps, FA and ADC, with the proposed 
AAD filter was analyzed, being helpful to increase the 
image signal to noise ratio (SNR). In sections Subjects 
and Anomalous and classic diffusion paradigm, the 
details about the subjects and the AAD filter paradigm 

are explained, respectively. The sections Image analysis 
and quality metrics and Statistical analysis present the 
quantitative analysis and sections Results and Discussion 
the study is presented.

Methods

Subjects

DTI images from 20 healthy asymptomatic right-handed 
subjects, with an average age of 28.4 ± 6.5 years 
(13 men, 7 women) were acquired on a 3T MR scanner 
(Achieva, Philips) at Clinical Hospital of Ribeirão 
Preto and all the subjects were recruited with a consent 
form approved by the local ethics committee. The DTI 
parameters used here was: 2D SE-EPI sequence, 
TE = 65 ms, TR = 7.4 s, b-factor = 1000 s/mm2, 16 volumes 
(1 non-diffusion volume and 15 whole-sphere gradients), 
acquisition matrix 128 × 128, voxel resolution 
2 × 2 × 2 mm3, 72 axial slices for whole brain coverage 
and sixteen acquisitions. All imaging parameters were 
set to optimize the total acquisition time in the scanner 
(2 min for N=1), based on the clinical application settings. 
The acquisitions were combined to obtain images with 
different noise intensity from different numbers of 
signal averages (N= 1, 2, 4, 6, 8 and 16). Additionally, 
3D-T1 weighted images (3D-T1w) were also acquired 
using a gradient echo pulse sequence covering the whole 
brain with the following parameters: TI/ Flip angle/ TE/ 
TEchoSpacing/ TR/ Resolution= 900ms/ 8o/ 3.2ms/ 
7.0ms/ 2500ms / 1x1x1mm3.

Anomalous and classic diffusion paradigm

The AAD filter derives from the anomalous diffusion 
equation and share its features (Tsallis, 2009). The main 
difference between the AAD filter and the AD filter is the 
use of q-Gaussian probability distributions (Tsallis, 2009) 
generated iteratively by the filtering process (Senra et al., 
2015). In previous studies, we have shown that q-Gaussian 
distributions are more suitable for noise attenuation in 
MRI structural images (T1 and T2 weighted images) 
than classical Gaussian distribution used in the AD 
filter (Senra et al., 2013, 2014, 2015). One important 
feature that arises with the q parameter (also known 
as the anomalous parameter) is the super and sub 
diffusivity regimes (Tsallis, 2009), which is related to 
the generalized nonlinear power law (Schwämmle et al., 
2008; Senra et al., 2015). Furthermore, the usual classic 
diffusion behavior, that is already described by the AD 
formulation is also presented in AAD filtering process 
when it is assumed q =1. For q < 1, a class of q-Gaussian 
functions with compact support is defined, which presents 
the sub-diffusion behavior. On the contrary, for q > 1, 
the q-Gaussian function class with infinite support is 
obtained, and thereby defines the superdiffusion regime. 
More details on such probability distributions can be found 
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in previous studies (Malacarne et al., 2001; Senra et al., 
2015; Tsallis, 2009; Tsallis and Lenzi, 2002).

The time (t), conductance (κ) and numerical stability 
(λ) variables were set based on previous studies, selecting 
its optimum values, i.e., t = 4 s, κ = 10 a.u., λ = 0.0625 a.u. 
(Moraschi et al., 2010; Perona and Malik, 1990; Senra et al., 
2015). The Equation 1 defines the anisotropic anomalous 
diffusion paradigm and Equations 2 and 3 defines the 
edge modulation function and the generalized diffusion 
coefficient, respectively (Senra et al., 2015). The α variable 
is defined as α = (2-q)(3-q), where it is easy to check that 
when q=1 all equations return the classical anisotropic 
diffusion method (Perona and Malik, 1990). The iterative 
numerical procedure applied here is explained in details 
in (Senra et al., 2015). In addition, the AAD filter is 
freely available as an open-source code for research 
applications, where it have been developed as a 3D 
Slicer module (Senra, 2017) and also as a ITK image 
processing code (Senra and Murta, 2017).
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It worth noting that the optimal conductance parameter 
can be estimated by iterative methods (Tsiotsios and 
Petrou, 2013), however, we have a fixed κ based on 
the previous optimization in MRI and DTI studies 
(Moraschi et al., 2010; Senra et al., 2015). Moreover, an 
optimization strategy was adopted in order to adjust 
the AAD filter parameters with the same optimum 
parameters set found for the AD approach, which 
provides a comparison between the anomalous filter 
with the best results found with the classical diffusion 
approach. Furthermore, all filtering processes were 
performed after the DTI data been pre-processed, i.e. 
after the eddy current, motion corrections and averaging 
steps. Therefore, each corrected DTI gradient volumes 
(N=1, 2, 4, 6, 8 and 16) can be filtered with both AAD 
and AD spatial filters and then passed to the sequential 
white matter analysis as presented in Figure 1.

Image analysis and quality metrics

The FMRIB Software Library (FSL) DTI processing 
pipeline (Jenkinson et al., 2012) was used to reconstruct 
the Fractional Anisotropy (FA) and Apparent Diffusion 
Coefficient (ADC) maps from all the DTI data, 
following intra-subject affine (12 degrees of freedom) 
registration for movement and DTI eddy current artifact 
correction. White matter segmentation was performed 
using the FSL-FAST tool on individual 3D-T1w images 
(Figure 1) in which this was applied to the registered 
DTI quantitative maps in order to obtain the segmented 
WM on FA and ADC maps.

The image quality resulting from the AAD, AD and 
N averaging approaches was evaluated on two different 
image features: quantitative improvement and perceptual 
image quality. The perceptual image quality was quantified 
using the structural similarity index (SSIM) (Wang et al., 
2004) due to several applications on this specific visual 
assessment (Lin and Jay Kuo, 2011). For the quantitative 

Figure 1. Diagram showing the general image processing applied for white matter segmentation on FA and ADC maps. All the steps were done 
using FSL software and the spatial filters were only applied on the averaged DTI volumes (N = 1, 2, 4, 6, 8).
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improvement, the relative mean error (RME) measure 
was applied. It worth noting that the RME evaluation 
could be denoted as a complementary metric in relation 
to the SSIM results, offering an overall voxel-wise error 
measure. Both metrics were estimated in FA and ADC 
maps, considering the segmented WM and all quantitative 
evaluations were made only on non-zero image voxels, 
i.e., the image background values were disregarded.

Here, we used the RME formulation based on image 
voxel-wise space scale calculation, which is usual for 
several image processing applications (Gonzalez and 
Woods, 2008). The Equation 4 defines RME used here, 
where I(r) is the input image, R(r) is the reference image, 
r(x,y) is the voxel coordinates and (M,N) is the size of 
the image. The reference image for SSIM analysis was 
the DTI volume with N=16 and for RME was the N=1. 
The reason why we chose different N for each metric 
is due to the application meaning, which for RME 
we want to estimate the filters efficiency on a clinical 
image quality (usually acquired with N=1) and for the 
SSIM we want to compare with the best image quality 
provided. Additionally, the SSIM improvement could 
be used for methods that are histogram dependent such 
as segmentation (de Boer et al., 2009) and also denotes 
the geometrical preservation presented by the image 
filtering approach (Wang et al., 2004).
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After the time and conductance parameters definition, 
the AAD filter needs to define the q-value, which accepts 
a broad continuous values interval ( 0 2, < < ∈q q R ) 
(Senra et al., 2015). An optimization procedure is required 
to find the maximum q-value performance, which defines 
the appropriate diffusion regime. In this step, we used 
both RME and SSIM as the objective functions to be 
optimized considering all DWI raw data. The q range 
was obtained using fixed numerical steps of 0.025. 
Five histograms were constructed for the optimum 
values of each metrics considering images with different 
numbers of signal averages (N = 1, 2, 4, 6, 8). The relative 
frequency of these histograms indicates the fraction of 
subjects with minimum/maximum metric value in one 
specific q-value, e.g., RME/SSIM histogram with 50% 
at q = 0.3 means that half of the subject’s filtered images 
had the minimum RME and maximum SSIM at q = 0.3.

A tractography reconstruction was also performed 
in order to study the filtering effect over the main tracts 
pathway. The tractography parameters were: deterministic 
FA guided pathway estimative, minimum/maximum path 
length of 20/800 mm, stop criteria of 0.25, and limited 
angle of 30o. A full-reference metrics were compared 

with the tractography image to infer the general image 
distortion reached by each filtering method in relation to the 
reference result (the unfiltered DTI image). Here we present 
a quantitative estimative description of the tractography 
analysis by the coefficient of variation (CV) of the FA 
value present in six representatives tracts in WM, such 
as the genu of the corpus callosum (GCC), splenium of 
the corpus callosum (SCC), corticospinal tract (CST), 
superior longitudinal fasciculus (SLF), uncinate fasciculus 
(UNC) and the inferior fronto-occipital fasciculus (IFO) 
(Wakana et al., 2007). The tractography reconstructions 
were made in 3D Slicer software (Pieper et al., 2004; 
Xia et al., 2008), which provides a better control set for 
image visualization than the FSL tractography toolkit.

Finally, it was also analyzed the FA variability given 
by the TSA approach (Zhang et al., 2010). The TSA 
pipeline calculates the statistical differences between 
groups, where it was conducted using the N=16 DTI 
volumes as the reference dataset and the same white matter 
regions given in the previous tractography evaluation. 
Moreover, using the same tracts region of interest (ROI) 
as previously described, the effect of each image filtering 
approach over the tracts count estimate was also studied. 
The number of fibers could bring more insights about the 
effects of each filter on post processing techniques that 
rely on deterministic tractography approach, e.g. whole 
brain structural connectivity.

Statistical analysis

Two-tailed t-tests, following data normality test 
verification with the Kolmogorov-Smirnov, were 
applied in all image quality evaluation indexes, i.e. 
RME and SSIM. The tractography representation using 
CV analysis used two-tailed t-test on each ROI, in 
order to infer the differences between raw and filtered 
data. The TSA analysis performs a t-test group analysis 
internally, which it was chosen a p-value of p=0.05 and 
5.000 permutations (Zhang et al., 2010).

Results

q-optimization

Figure 2 illustrates the histograms obtained with 
the RME and SSIM indexes. The two well-defined 
peaks indicate the optimum q values for DTI filtering, 
where the AAD filter tends to have a balance between 
optimal values of q = 0.4 and q = 1.4. However, as we 
increase the number of averages, the quality metrics 
become more defined at q = 0.4. Therefore, we adopted 
q = 0.4 as the optimum q value for AAD filter applied 
to the DTI images.
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Image quality evaluations
From the FA and ADC maps, both RME improvement 

and SSIM index for each image volume of N acquisitions 
were calculated. The improvement, for RME metric, 
was estimated as the ratio between the filtered image 
and the original image with N=1, i.e. without any filter 
application and with the highest noise component. 
This analysis was adopted to estimate the overall image 
quality improvement, regarding the quantitative error, 

which could be reached with a usual DTI acquisition 
adopted on clinical routine. In the case of the SSIM, it 
was adopted the N=16 averages image as the reference 
image, which helps to compare the image details 
distortions obtained from each computational filter 
(using the higher image quality data as the reference 
image). These operations were applied separately for 
each N averaging (N = 1, 2, 4, 6, 8 and 16) and Figure 3 
shows the results for both RME and SSIM.

Figure 2. Histograms for optimum q values that minimize the relative mean error (RME) and maximize the structural similarity index (SSIM). 
The N values are calculated based on the sequential acquisition order, i.e. the N=1 is the first DTI volume, N=2 is the average of the first two DTI 
acquisitions, and so on. Maximum frequency in these curves is used to select the optimum q parameter for the AAD filter.

Figure 3. Relative RME and SSIM improvements comparing the anisotropic anomalous diffusion (AAD) filter and the classical anisotropic diffusion 
(AD) filter. RME improvement used the N = 1 image as the reference image, which is the common N value in clinical routine, and SSIM used the 
N = 16 image due to its high-quality structural definition. The N calculation follows the same criteria as explained in Figure 2.
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The results obtained with the AAD filter showed 
a consistent improvement for both quantitative maps, 
FA and ADC. Particularly, the FA maps showed a 
significant (p < 0.05) higher image quality when compared 
to the N averaging approach and AD filter. These image 
quality improvements were also obtained for ADC maps, 
however, with lower differences between each method. 
As seen in Figure 3, regarding the results obtained with 
the AAD filter, the SSIM values are close to optimum 
value, i.e. SSIM = 1. Furthermore, SSIM values are 
significantly higher for AAD filter when compared to 
the AD filter (p < 0.001). The SSIM metric is sensible 
to the tissues borders and geometrical shapes presented 
in the entire image, which gives a broader difference in 
FA maps than in ADC map. Additionally, a comparison 
was also conducted between the quantitative values of FA 
and ADC maps in six WM regions in DTI images, with 
and without the application of spatial filters (Table 1).

It worth commenting that the data fluctuation is 
partially given from the intrinsic biological variability 
and also due to a low image filtering efficiency. A lower 
CV value is not sufficient to determine whether the 
filtering approach achieved a reasonable result, but the 
CV measurement should be compared with the others 
image quality assessments in order to infer a meaningful 
conclusion. Hence, a precise image filtering methodology 
should decrease the noise level and simultaneously preserve 
the biological structure. Regarding the CV values, the 
AAD filter demonstrates a decrease of over 30% with the 

FA values (p = 0.05), which, on the other hand, the AD 
filter shows an increase in the CV values. This increase 
in CV given by the AD filter could be explained mainly 
by the strong local blurring, mainly in tissue borders, 
which provides a local value spreading, leading to a 
higher CV estimative. In addition, the use of the AAD 
filter obtained CV measurements comparable with 
higher N averages (Table 1), which infers low image 
distortions. Interestingly, the anomalous paradigm 
showed a stable image enhancement being independent 
on image SNR, illustrating a consistent response over 
different averaging. In general, the AAD filter showed 
a robust filtering performance for each image quality 
metric, i.e. CV, RME, and SSIM.

Additionally, the FA and ADC maps are represented 
in Figure 4 in order to illustrate the difference obtained by 
each image filtering approach. In general, the differences 
are highlighted in regions with less dense fiber tracts, 
mainly between the frontier of the gray and white 
matter. The AD filter demonstrates higher distortions 
on the tissues interfaces which were not evidenced by 
the AAD filter. Furthermore, the AAD filter showed a 
consistent correspondence with the N=16 data profile, 
mainly in FA map. In the case of ADC maps, all the 
methods showed a regular response, i.e. the ADC values 
do not show an intense variation mainly because this 
quantitative map presents lower contrast than the FA 
map. The results given in Figure 3 complements what 
is evidenced in Figure 4. Additionally, in order to give a 

Table 1. Coefficient of variation (CV) obtained from the quantitative FA maps with and without filter applications in six different WM regions. 

N GCC SCC
CST SLF UNC IFO

Right Left Right Left Right Left Right Left

Raw

1 0.427 0.423 0.435 0.375 0.198 0.248 0.248 0.286 0.380 0.332
2 0.300 0.311 0.258 0.334 0.138 0.169 0.174 0.200 0.276 0.236
4 0.214 0.219 0.178 0.231 0.098 0.118 0.123 0.141 0.194 0.164
6 0.175 0.180 0.145 0.188 0.081 0.096 0.100 0.115 0.159 0.135
8 0.151 0.156 0.126 0.163 0.070 0.083 0.087 0.100 0.137 0.117
16 0.107 0.111 0.088 0.115 0.049 0.058 0.061 0.071 0.097 0.080

AAD

1 0.323 0.356 0.372 0.281 0.089 0.189 0.151 0.189 0.276 0.224
2 0.201 0.212 0.156 0.230 0.063 0.089 0.097 0.103 0.172 0.125
4 0.113 0.120 0.106 0.128 0.059 0.061 0.065 0.073 0.089 0.078
6 0.115 0.098 0.074 0.098 0.048 0.056 0.050 0.067 0.071 0.069
8 0.051 0.075 0.062 0.086 0.036 0.048 0.048 0.052 0.083 0.053
16 0.058 0.051 0.049 0.051 0.024 0.025 0.036 0.036 0.065 0.042

AD

1 0.525 0.548 0.436 0.575 0.297 0.343 0.362 0.399 0.465 0.436
2 0.371 0.389 0.323 0.382 0.207 0.246 0.266 0.290 0.320 0.300
4 0.275 0.286 0.245 0.296 0.167 0.186 0.201 0.218 0.233 0.234
6 0.215 0.224 0.183 0.225 0.189 0.136 0.149 0.161 0.190 0.166
8 0.181 0.191 0.154 0.191 0.098 0.112 0.123 0.135 0.159 0.147
16 0.137 0.141 0.118 0.145 0.079 0.088 0.091 0.101 0.127 0.118

The values are expressed by the mean of each group, and the AAD and AD filters are applied on all the range of N (1, 2, 4, 6, 8 and 16). The highlighted 
rows illustrate the image quality improvement obtained with AAD in comparison with the raw DTI data. Coefficient of variation (CV) obtained from the 
quantitative FA maps with and without filter applications in six different WM regions.
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more precise visual comparison between AD and AAD 
results, Figure 5 can be analyzed. As noticed, the general 
visual improvement achieved by the anomalous paradigm 
showed a subtle but considerable image enhancement in 
comparison with the raw data (N = 1). However, more 
importantly, the AD general distortions are easier to 
identify in Figure 5, which complements the quantitative 
evaluation previously provided. The general tissue 
anatomical properties seem to be more preserved using 
AAD filtering method, showing lower noise disturbances 
and better global brain WM structures maintenance.

In order to compare AAD and AD filtering regarding 
the assessment of fiber representation, two tractography 
studies were adopted. The TSA measure uses the mean 
FA value from the N=16 dataset as the baseline values, 
and the color map illustrated in Figure 6 is regarding the 

FA contrast between the N=16 data and the other filtering 
approaches (N averages or computational filtering). 
In addition, using the same TSA tracts ROIs, white 
matter deterministic tractographies were reconstructed 
in order to infer the fiber counting differences between 
the computational filters and averaging approaches. 
The fiber counting evaluation is given in Table 2.

Discussion

In general, the AAD filter showed a consistent image 
enhancement, for both FA and ADC maps, which could 
be highlighted the performance with N = 6 and N = 8 
acquisitions as seen in Figures 2 and 3. This higher 
filtering performance is reasonable due to less noise on the 
image data. The Laplacian function is more robust with 

Figure 4. (a) Examples of FA and ADC maps obtained from raw and filtered DTI data with AAD and AD approaches. The raw DTI (N=1), filtered 
DTI with the AAD (q = 0.4) method and the filtered DTI with the classic AD method are compared with the FA map resulting from the reference 
volume (N=16); (b) A profile is represented to illustrate the FA and ADC values along a medial portion (white lines). Edges preservation are 
evident in both AD and AAD approaches; however, only the AAD filter is also able to maintain the edge definition in brain regions where there are 
well-defined transitions between gray and white matter (arrows).
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Figure 5. (a) Illustration of each filtering application using N=1 DTI data. The sagittal and coronal orientations are presented, where amplification 
is provided in a defined region (white square box). Firstly, as both filters were applied in the axial plane (2D filtering approach), it is clear to see 
that there is no apparent distortion on the transversal planes. Secondly, it is easier to identify the main filtering artifacts caused by the AD method, 
showing a stronger blurring on large areas in the white matter tissue, e.g. cortico-spinal tract. The AAD method presents more reliable denoising 
results, maintaining the general geometrical properties and less noise interference in FA maps. A similar response is found in ADC maps (b).

Figure 6. Tract-Specific Analysis (TSA) applied on sequential averages DTI data (N = 1, 2, 4, 6 and 8), AAD and AD filters (both applied 
over N = 1 DTI). The first image (upper left) is the ROIs used in this TSA study, where the following images only represent the corpus callosum 
region. The AAD filter showed an FA map quality similar to higher N averages, giving more precise noise attenuation than what is seen in AD filter.
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better image quality, leading to better tissue boundaries 
estimate. However, after the boundaries have been set, 
the local spatial noise filtering is assumed regarding the 
classical Gaussian (AD filter) or q-Gaussian (AAD filter) 
paradigms.

It is worth mentioning that the AAD filter shows 
consistently better results in comparison with the AD 
filter, indicating a better filtering modulation given by the 
anomalous diffusion paradigm (Senra et al., 2013, 2015). 
Moreover, the AAD filter response over low N averaging 
also shows an interesting result, in which the overall image 
quality could be enhanced to a quality level equivalent 
to an image with higher numbers of averages. Figure 3 
shows the comparative improvements and absolute index 
value (for RME and SSIM, respectively) obtained with 
and without each filtering approach, according to N. 
We noticed that AAD filter provides an image quality 
statistically equivalent (p<0.05) to images obtained with 
higher N. In general, a decrease in RME was generally 
obtained as an equivalent of two additional acquisitions, 
i.e. a N = 1 image that was filtered by AAD filter has 
an equivalent image quality that would be achieved by 
a N = 3 averages.

In our previous study, it was observed that q 
>1 is more suitable to filter structural MRI images 
(Senra et al., 2015). However, the noise intensity in DTI 
led us to adopt q < 1, as seen in Figure 2. The q-Gaussian 
defined with q < 1 offers a robust neighborhood voxel 
intensity regulation with restrict local influence, given 
by the compact support probability density function. 
For this reason, the restrict diffusion offers a partial 
solution to high noise intensity level presented in DTI 
data. Specifically, we found q = 0.4 as optimum q value 
for DTI processing, and thus subdiffusion is more 
advantageous for DTI images.

The high influence of imaging artifacts such as partial 
volume effect, magnetic pulse inhomogeneity, and noise 
level, naturally present in DTI images, can offer barriers 
to both anomalous and classical spatial filters. However, 
even with these confounding components, the AAD 

filter was more robust than the AD approach. The same 
edge function (Equation 2) for both image filtering 
methods was applied in this study, showing that the main 
difference resulted from each image filter approach is 
basically obtained from the voxel intensity probability 
distribution purposed by each filter. In other words, the 
q-Gaussian distribution with compact support, given by 
the AAD method, showed a better noise attenuation, 
seen in the FA and ADC measures. On the contrary, the 
Gaussian smoothing, given by the AD method, apply a 
higher weighting over far voxels, which is characteristic 
for long tail probability distribution function. Hence, 
the anomalous filtering method results in better edge 
preservation and less quantitative distortions, mainly 
due to the q-Gaussian short tail properties.

In summary, the AAD filter is robust and consistent 
with both FA and ADC maps. Several brain regions 
present strong distortions when the AD filter is applied, 
such as the corpus callosum and the internal capsule. 
Furthermore, the AD filter presented poor control over 
tissue transition mainly in the interface between white 
and gray matter, as seen in Figure 4, 5 and 6. The central 
region on each ROI appears strongly smoothed with the 
AD filter, which it is considered as a homogenous region 
by the classical filtering paradigm. In fact, some image 
artifact may influence the general filtering performance, 
e.g. magnetic field inhomogeneity and head motion, 
which smoothly distorts a low level of voxel intensity 
throughout the image space. A spatial filtering approach 
should provide a controlled handling of this low-level 
interference, being capable of reducing the noise level 
without removing fine details of the image. As noticed, 
the AAD method was more promising than AD approach, 
as seen in Figure 5 and 6. Furthermore, it is highly 
probable to find crossing-fibers regions in the brain 
WM, being naturally presented as an inhomogeneous 
feature in the DTI maps (Tuch et al., 2003). An intense 
smoothing with relative edge preservation does not imply 
preservation of the local biological environment, which 
may cause serious interference on further DTI analysis 

Table 2. White matter fiber counting estimates from the deterministic tractography reconstruction in six different WM regions. 

GCC SCC CST SLF UNC IFO
N=1 62 ± 28 101 ± 22 125 ± 24 30 ± 5 35 ± 9 32 ± 7
N=2 70 ± 22 123 ± 19 141 ± 19 35 ± 6 33 ± 8 36 ± 8
N=4 92 ± 18 141 ± 15 153 ± 12 36 ± 4 34 ± 6 39 ± 6
N=6 105 ± 12 150 ± 12 163 ± 13 35 ± 4 34 ± 5 43 ± 5
N=8 103  ± 13 149 ± 11 165 ± 12 37 ± 5 34 ± 6 44 ± 5
N=16 107 ± 12 151 ± 12 164 ± 11 36 ± 4 34 ± 6 42± 4
AAD 75 ± 28 132 ± 7 158 ± 12 36 ± 5 35 ± 16 41 ± 3
AD 65 ± 35 127 ± 12 141 ± 10 26 ± 7 30 ±13 30 ± 5

The values are expressed by the mean and standard deviation of each group. Units are arbitrary blue and both AAD and AD filters are applied only on 
N=1 DTI data.
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such as structural brain connectivity (Van den Heuvel 
and Hulshoff Pol, 2010).

On the other hand, such an intense filtering artifact is 
not significantly presented in the AAD filter. The AAD 
filter showed as a suitable method to maintain the edge 
definition in brain regions where exist well-defined 
transitions between gray and white matter tissues. 
As noticed in Figure 4, the AAD filter provides an FA 
profile that has a close similarity to the N = 16 FA results. 
The difference in FA and ADC maps reconstruction 
is related to the filtering effect over the eigenvalues 
and eigenvector estimation from DTI reconstruction. 
Remember that all filtering methods were only applied 
to the raw DTI data, providing insights about the 
filtering response on the diffusion gradients volumes. 
In general, the classical filtering approach distorts the 
tensorial information, resulting in a lower FA estimative. 
However, these image distortions do not offer a higher 
impact on the ADC maps mainly because it uses the 
mean eigenvalues to reconstruct this type of image.

The TSA estimative add another advantage to the 
image enhancement achieved by the AAD filter, in 
comparison for N = 1 and AD filter. Firstly, it could be 
noticed that the higher contrasts are seen in raw N = 1 data, 
which is expected by the intense noise component. 
As the number of averages rises, the variability of the 
FA values decreases. Secondly, the results obtained by 
the AAD filter showed a consistent FA enhancement 
for the corpus callosum tracts and, for the other white 
matter tracts, the response was similar.

In general, the tractography evaluation also confirms the 
distortions showed by the AD filter, as shown in Table 2. 
As noticed, the major white matter tracts resulting from 
AAD filter reveal a favorable image filtering application 
for the anomalous paradigm. For instance, taking the 
mean fiber counting values at GCC and SCC regions, 
the N = 1 acquisition showed 62 fibers and 101 fibers; 
N = 16 acquisitions showed 107 and 151 fibers; AAD 
filtered showed 75 and 132 fibers and AD filtered showed 
65 and 127 fibers. The same pattern repeats for the other 
white matter tracts. In fact, the major difference presented 
in Table 2 appear between the AD filter and the other 
image filtering approaches, i.e. the N = 16 averages and 
the AAD filter. In general, the AD filter shows lower 
fiber counting than the AAD filter, which the AAD filter 
tends to give a slight advantage in comparison with the 
raw N = 1 tractography, offering less variability and a 
total fiber counting comparable with higher N averages.

In conclusion, investments in scanner hardware for 
DTI image improvement are, in many cases, economically 
impractical and for this reason, a commonly adopted 
strategy is the acquisition of multiple images in DTI 
exams. However, there is often a practical limitation 
related with the increased acquisition time. Recently, 

several studies using computational tools for noise 
attenuation were applied in order to improve the quality 
and accuracy of DTI scans. However, the widely used 
classic anisotropic filtering paradigm does not offer 
promising results for noisy images, especially for DTI 
images. In this study, we show a significant quality 
improvement in visual and quantitative measurements 
when the AAD filter is applied. In general, it is observed 
that DTI images processed with the AAD filter with 
q = 0.4 present a final image quality similar to what is 
seen in DTI images with more acquisition averaging. 
Finally, the AAD filter is a promising method that 
could help other applications in medical diagnosis and 
neuroscience research.
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