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Introduction
Magnetic resonance spectroscopy (MRS) is considered 

a major tool for the biochemical study of tissue in vivo 
(El-Deredy, 1997; Ladroue, 2004). As a non-invasive 
technique, MRS becomes attractive for the study of 
the brain, diagnosis and follows up of various diseases 
(Gujar et al., 2005). It is particularly useful in the 
diagnosis of brain tumors, allowing the inference of the 

relative or absolute concentration of a variety of substances 
(El-Deredy, 1997). However, the scope of its use in 
clinical applications is hampered by the difficulty of direct 
interpretation of the spectra, which requires training and 
experience, and direct comparison of different spectra, 
especially complicated by the large number of metabolites 
present in a spectrum, often in concentrations small 
enough to be mistaken for noise (Tate, 1996).

The design of applications able to automatically 
interpret the exams in order to identify its most 
relevant information has been one of the alternatives in 
decision-making tasks (Sharda et al., 1988). Such clinical 
decision support systems (DSS) are now one of the focuses 
of the application of artificial intelligence in medicine, 
with a special emphasis on machine learning and pattern 
recognition disciplines (Ramesh et al., 2004). A pattern 
recognition algorithm seeks the best possible categorization 
by gathering a set of observations by their common 
nature. Pattern recognition routines can be divided into 
three main steps: feature extraction, pre-processing, and 
classification. A feature extraction procedure converts 
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input data into features, retaining the most informative 
characteristics of the data. Pre-processing tasks include 
minimizing the information redundancy of a dataset 
as well as possible normalization and filtering steps. 
Lastly, the classification is performed, i.e. rules are set 
to designate which category new observations belong 
to through training, which is, adjusting the algorithm 
to the data set available in order to generalize it to new 
data. Although it can be summarized in a few steps, a 
pattern recognition routine may consist of several different 
algorithms with their particularities and assumptions 
about the distribution of data.

The application of pattern recognition routines to 
magnetic resonance spectra has been widely studied 
(El-Deredy, 1997; Ladroue, 2004; Tate, 1996). Among the 
first initiatives, Reilly and Kowalski (1971) dealt with 
spectral analysis in analytical chemistry. In time, the idea 
was applied to the diagnosis of brain tumors, by classifying 
spectra obtained in vivo and in vitro (El-Deredy, 1997; 
Preul et al., 1998). Finally, the INTERPRET project 
(Tate et al., 2006) facilitated the spread of studies with 
the establishment of a database containing hundreds of 
brain tumors and healthy tissue spectra (Julià-Sapé et al., 
2006), and further with the design of clinical decision 
support tools (Julià-Sapé et al., 2015). The INTERPRET 
project fomented research on pattern recognition of brain 
tissue magnetic resonance spectra, and it remains the 
most accessible source for this kind of study, which is 
carried by diverse research groups worldwide to this date 
(Julià-Sapé et al., 2015). Several studies explored binary 
brain tissue classification tasks, which could serve as a 
DSS aimed at differential diagnosis (Arizmendi et al., 
2014; Butzen et al., 2000; García-Gómez et al., 2009; 
Gray et al., 1998; Luts et al., 2008; Majós et al., 2004; 
Preul et al., 1998; Server et al., 2010; Vellido et al., 
2012), or quality control (Wright et al., 2008), with a few 
multiclass only studies (Faria et al., 2011; Opstad et al., 
2007; Poptani et al., 1999; Tate et al., 1998; 2003), and 
studies mixing both approaches (García-Gómez et al., 
2008; Lukas et al., 2004; Roda et al., 2000). Simpler tasks 
included the classification between neoplastic and 
non-neoplastic tissue (Butzen et al., 2000) or between 
meningioma and non-meningioma (Gray et al., 1998), 
whereas more complex studies tried to accomplish the 
classification among many tissue types (Lukas et al., 
2004; Tate et al., 2003) or achieve a unified feature 
extraction, preprocessing and classification framework 
(Arizmendi et al., 2014). The optimal classification 
between tumoral and healthy tissue spectroscopy has 
already been established, as well as the classification 
between the meningioma, aggressive tumors and 
low-grade glial tumors superclasses. Abscesses, on 
the other hand, have rarely been studied. Poptani et al. 
(1999) report the accuracy, specificity and sensitivity 
of multiclass classification of high and low-grade 

gliomas, tuberculomas, abscesses and normal tissue short 
TE STEAM single-voxel spectra using artificial neural 
networks. In general, though, the area under the curve 
(AUC) of the receiver operating characteristic (ROC) is 
a more suitable measure, as it infers the discriminative 
power of a distribution and does not assume an arbitrary 
threshold for classification.

These tasks are extremely important when imaging 
diagnosis is not enough. In conventional anatomical 
images, necrotic or cystic tumors and abscesses may look 
the same thanks to the usual physiological responses in 
the brain (Desprechins et al., 1999). Restrictive diffusion 
within ring enhancement is not enough to differentiate 
brain abscesses from metastases (Hartmann et al., 2001). 
These confounding factors may compromise treatments, 
so a biopsy is usually performed, but it is an invasive 
procedure and therefore risks are involved. Also, grading 
of gliomas, a notoriously inhomogeneous type of 
tumor, has many confounding factors, to the point that 
approximately 38% of stereotactic biopsy diagnosis may 
differ from histopathological classification performed in 
resections from the same patient (Jackson et al., 2001). 
Brain tumor diagnosis would benefit much from an 
automated analysis of MR spectra due to these factors, 
helping to improve the accuracy of the radiological 
findings. Besides that, a common confounding factor 
in imaging that play almost no role in MR spectroscopy 
is the tumor shape. In special, for metastases and 
glioblastomas, the two most prevalent intra-cerebral 
tumors among adults which look virtually the same under 
certain circumstances and may have similar perfusion 
and contrast enhanced profiles, yet have completely 
different treatments (Fan et al., 2004).

Considering the data origin, in vivo 1.5 T single 
voxel spectra analysis is a recurring motif in the literature 
including data from the INTERPRET (Tate et al., 2006) 
and eTUMOUR projects (eTumour Consortium, 2008). 
Few in vitro studies were performed (Faria et al., 2011; 
Gray et al., 1998). The application of long or short echo-time 
(TE) spectroscopy has also been reported, as the choice 
of echo time affects the apparent concentration of every 
metabolite taking into account its transversal relaxation 
time (Majós et al., 2004) and also considerations about 
the dynamic range of the detectors (Ishimaru et al., 
2001). In Figure 1, the median and interquartile range of 
example spectra are shown, highlighting the differences 
between spectral profiles between two echo times and 
also between two tissue types, brain abscesses and 
anaplastic astrocytomas, in both echo times.

In this paper, we propose the training of algorithms 
in several brain tissue spectra classification tasks in 
different experimental conditions. We used support vector 
machines and random forests. Different experimental 
scenarios were studied: 1.5 T short TE, 1.5 T long 
TE and 3.0 T long TE spectroscopy. Normal, abscess 
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and tumor tissues were classified with only estimated 
concentrations of single voxel MRS as input variables. 
Binary and multiclass classification was performed, 
and in the case of the latter a novel comparison to 
radiological findings is provided, which to the best of 
our knowledge was never reported. Our findings may 
provide new insights on the application of MRS as a 
differential diagnosis tool in several tasks, and also on 
the applicability of 1.5 T and 3.0 T spectroscopy and 
short and long TE sequences.

Methods
The data were obtained retrospectively from sources 

that garnered their respective Ethical Review Committee 
or equivalent approval.

Data and acquisition

Two datasets were assembled from the 1.5 T spectra 
acquired in CDP (Center Diagnostic Pedralbes at 
Pedralbes, Barcelona and Esplugues del Llobregat), IDI 
(Institut de Diagnòstic per la Imatge at Bellvitge), SGUL 
(St Georges Hospital), UMNC (Universitair Medisch 
Centrum Nijmegen), UJF (Unité mixte Université Joseph 
Fourier), FLENI (Fundación para la Lucha contra las 
Enfermedades Neurológicas de la Infancia), MUL 
(Uniwersytet Medyczny w Lodz) and validated in the 

INTERPRET project (Tate et al., 2006), obtained in a 
digital database (Julià-Sapé et al., 2006). The first dataset 
included 231 long echo time spectra (33 acquired with 
TE = 135ms, 3 acquired with TE = 144ms, 195 were 
acquired with TE = 136 ms). The second dataset included 
138 short echo time spectra (109 acquired with TE = 30 ms, 
29 acquired with TE = 31 ms). The radiological findings 
annexed to the spectra were also included. In addition, for 
the third dataset 59 spectra were obtained retrospectively 
from the server of the HCRP (Hospital das Clínicas de 
Ribeirão Preto), acquired from a 3.0 T MR scanner, 
TE = 144 ms, repetition time (TR) 1500-2000 ms, 
VOI = 8-20 ml. All the spectra in the three datasets were 
obtained in single voxel mode using a Point Resolved 
Spectroscopy (PRESS) acquisition including water-scaling. 
The volume of interest (VOI) was selected in a way to 
cover the maximum uncontaminated tumor tissue. In the 
same databases, the final diagnosis, obtained through 
biopsy or imaging, was acquired for the primary brain 
tumors. The HCRP dataset lacked both healthy tissue 
and abscess spectra.

Data processing and metabolite quantitation
Metabolite concentrations were estimated using the 

LCModel software (Provencher, 2001). The spectra 
were acquired in many different centers and, ideally, 
basis spectra should be acquired one for each center. 

Figure 1. Median 1.5 T single voxel (SV) PRESS normalized spectra with baseline-correction done in LCModel in different echo-times (TE): 
(a) Abscess short TE (n = 5); (b) Abscess long TE (n = 8); (c) Anaplastic astrocytoma short TE (n = 6); (d) Anaplastic astrocytoma long TE (n = 7). 
The shadowed areas represent the interquartile ranges.
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However, that is impractical. The simulation of the 
basis spectra ends up being a practical and above all 
invariant solution in the absence of acquired basis spectra. 
Simulation was conducted in the Simulation application 
of the open-source VeSPA suite (Soher et al., 2011). 
A TE = 31 ms, PRESS, 64MHz, basis was simulated 
including various metabolites expected to be present 
in brain tissue. Other basis sets were provided by the 
software supplier. In total, for long TE spectra, for 
both 3.0 T and 1.5 T, thirty-one concentrations were 
estimated, including pure substances and mixtures of 
associated substances. They are alanine (Ala), creatine 
(Cr), phosphocreatine (PCr), glutamine (Gln), glutamate 
(Glu), glicerophosphocoline (GPC), phosphocoline (PCh), 
inositol (Ins), lactate (Lac), N-acetylaspartate (NAA), 
N-acetylaspartylglutamate (NAAG), scyllo-Inositol 
(Scyllo), creatine singlet correction around 3.94 ppm 
(-CrCH2), guanidinoacetate or other signals around 
3.78 ppm (Gua), and the mixtures GPC+PCh, 
NAA+NAAG, Cr+PCr and Glu+Gln and lipids (Lip) and 
macromolecules (MM) denoted following their position 
in the spectrum in ppm: Lip13a, Lip13b, Lip09, MM09, 
Lip20, MM20, MM12, MM14, MM17, Lip13a+Lip13b, 
MM14+Lip13a+Lip13b+MM12, MM09+Lip09 and 
MM20+Lip20. In addition, for short TE spectra, the 
concentrations of aspartate (Asp), Gamma-Aminobutyric 
acid (GABA), glucose (Glc), and taurine (Tau) were also 

assessed. These estimated concentrations were used as 
the independent variables, or features, to the learning 
algorithms in our study. Logarithmic transformation 
was applied on the concentration values plus one to 
reduce the skew and keeping the minimum value of 
each variable at zero.

Lukas et al. (2004) point out that similar results are 
obtained when using either the estimated metabolite 
concentrations, the peak integrals or the constituent 
points of the spectra as input variables. We opted for 
using the estimated concentrations estimated through 
LCModel, as Opstad et al. (2007) discuss certain benefits 
attained through this method. The whole methodology is 
summarized in Figure 2. With the whole dataset, several 
binary classification tasks were assembled with different 
TE, B0 and the classes shown in Table 1.

Classification tasks and analysis
Five models were studied in each task: random forests 

and support vector machines with linear, gaussian, sigmoid 
and polynomial kernels. Tuning was not performed due 
to the really limited sample size in most classes, which 
in turn creates less than optimal models but on the 
other hand helps to mitigate overfitting. We chose these 
algorithms because both are two extensively studied 
algorithms in the literature, due to their robustness to 
high dimensionality and high feature to observation 

Figure 2. Summary of the methodology for tumor, abscess, and normal tissue classification based on MRS data: single-voxel (SV) spectra were 
obtained at seven centers and processed in LCModel. Metabolites quantification estimates were concatenated into a dataset. These estimates were 
log plus one transformed and then used as input to learning algorithms in the mlr package.

Table 1. Classes and sample size distribution for field strength (B0) and echo-time (TE).

B0 1.5 T 1.5 T 3.0 T

TE short long long
Abscesses 5 8 -
Healthy tissue 10 15 -
Glioma Grade I-II 16 19 19
Glioma Grade III 6 7 5
Glioma Grade IV 38 61 22
Metastasis 26 28 7
Meningiomas 37 38 6
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ratio, such as what is commonly found in microarray 
analysis (Statnikov et al., 2008), with regularization 
measures or bootstrap aggregation to avoid overfitting, 
obtaining highly flexible decision boundaries. The specific 
parameters used in the implementation of each algorithm 
used is not important to the scope of our work, where 
we aim to show in which tasks classification algorithms 
are effective, even if, unknowingly, less than optimal 
models are found.

The algorithm that best fit each task was determined 
using the average performance evaluated through repeated 
resampling. The validation was conducted through the 
stratified subsampling method that makes possible to 
estimate the stability of the obtained models, with a 
split rate of 2/3 and 200 repetitions. To determine if 
the algorithms rank differently regarding the evaluation 
measure, a post-hoc overall Friedman rank sum test 
(Demšar, 2006) was performed, which null hypothesis 
states there is no difference among classifiers. If the 
null hypothesis of this first test is rejected, then a 
Nemenyi multiple comparison test (Demšar, 2006) with 
q approximation for unreplicated blocked data can be 
performed to determine which pairwise differences are 
significant.

Taking into account the results in the binary 
classification and similarities between tumor types, 
another task was created for the classification between 
meningiomas, low grade gliomas, the concatenation 
of grade I, II, and III gliomas, and aggressive tumors, 
the concatenation of metastases and glioblastomas. 
For this task, repeated stratified nested cross validation 
was used, with a 10-fold inner cross validation loop and 
an outer 5-fold repeated 2 times cross validation loop. 
The SVMs were tuned with a 60 iterations random 
search strategy for kernel and cost. The results of this 
multiclass classification for both TE values and 1.5 T 
spectra were compared to the radiological diagnosis 
attached to the spectra, which comes as a single line 
describing the possible inferences from the imaging 
and spectroscopic studies. The described radiological 
diagnosis was coerced into one of the three classes, such 
as the label ‘GLIOBLASTOMA/ METASTASIS’ being 
translated into the class ‘AGG’ (aggressive tumors), or 
the case was discarded in this analysis as an ambiguous 
or invalid diagnosis, such as in the case of ‘GLIOMA’, 
which is ambiguous as gliomas appear in two classes, 
or in the case of the label ‘ABSCESS’, which are not 
included in this analysis and so are considered invalid.

The mean AUC was measured, and in the multiclass 
tasks the strategy proposed by Hand and Till (2001) was 
used. Analyses were carried out in the statistical software 
R 3.2.1. (R Core Team, 2016), based on the structure 
developed and made available by Bischl et al. (2016).

Results
The AUC metric was evaluated for all models in 

all tasks. The highest AUC averaged over resampling 
repetitions returned for each task are shown in Table 2, 
in common characters accompanied by the respective 
learning algorithm denoted as a digit whereas the 
lowest averages observed are represented in superscript 
analogously. Even though the comparison between 
different algorithms is not part of the main aims of our 
work, a post-hoc overall Friedman rank sum test was 
performed, showing that, apart from the task studied, the 
performance measure is not the same for every classifier 
(p < 0.001). Pairwise comparisons using the Nemenyi 
multiple comparison test with q approximation for 
unreplicated blocked data were also performed. Random 
Forest algorithm ranks significantly better than SVM 
Linear (p = 0.0081) and SVM Polynomial (p = 0.0015) 
regarding AUC. No other significant pairwise difference 
was obtained.

The multiclass classification cross validation results 
are shown in Table 3. For the long TE task and the short 
TE task, the classification result and the radiological 
findings are shown in Table 4. As the radiological 
diagnosis does not limit itself to the classes presented in 
the task, the study does not account for instances labelled 
with uncertainties, ambiguities and diagnostics that do 
not correspond with the proposed classes. Among the 
instances, both the classification and the radiologist 
agreed on the assigned class, even if both were wrong, 
shown in the main diagonal of each half of Table 4, the 
accuracy was 98.9% and 96.8% for long TE and short 
TE, respectively.

Discussion
The classification methodology used here is able to 

successfully differentiate between tissue types. A lower 
result was found in the discrimination between healthy 
subjects tissue and grade III gliomas in short TE data, 
achieving an AUC of 0.801 in short TE 1.5 T spectra. 
A reason for this might be due to tissue contamination 
or low quality of the short TE spectra. Glioma grading 
takes into account the highest grade observed in the 
biopsy, and does not mean there are no cells of lower 
grade glioma in the brain. Also, normal tissue might be 
present in the spectra thanks to the voxel size. On the 
other hand, low quality of the spectra might also decrease 
the differentiation, confounding metabolite peaks and 
background noise.

Data sources were subject to extensive quantitative 
quality assessments, at both 3.0 T (Barreto et al., 2014) 
and 1.5 T (Van der Graaf et al., 2008), and were deemed 
suitable for quantitative research.
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Table 3. Multiclass classification cross validation results across field strengths and echo-times (TE).

1.5 T short TE 1.5 T long TE 3.0 T long TE
AUC Accuracy AUC Accuracy AUC Accuracy
0.843 0.752 0.895 0.861 0.755 0.804

The classes are GBM = Glioblastoma; LGA = Low Grade Astrocytoma; MEN = Meningioma; MET = Metastases.

Only the best results are emphasized, as our work 
is not focused on the comparison between classifiers, 
but instead on showing in which classification tasks 

the MRS data alone carries enough information to 
differentiate between tissue types. AUC over 0.9 was 
achieved in several binary tasks, but small differences 

Table 2. Binary classification cross validation results at different field strength (B0) and echo-time (TE). AUCs over 0.9 denoted with boldface.

B0 1.5 T 1.5 T 3.0 T

TE short long long

AA GBM 0.797 (4)
0.674 (1,2)

0.763 (3)
0.619 (5)

0.923 (2)
0.867 (4)

AA LGA 0.703 (2)
0.651 (5)

0.847 (3)
0.717 (1,2)

0.733 (3)
0.637 (1,2)

AA MEN 0.710 (4)
0.655 (5)

0.907 (4)
0.810 (5)

0.837 (5)
0.779 (4)

AA MET 0.869 (4)
0.804 (1,2)

0.894 (3)
0.802 (1,2)

0.896 (3)
0.811 (4)

AA ABS 0.959 (3)
0.760 (4)

0.962 (5)
0.936 (4) -

ABS GBM 0.838 (3)
0.733 (5)

0.779 (5)
0.751 (4) -

ABS LGA 0.983 (3)
0.953 (4)

1.000 (3)
0.993 (4) -

ABS MEN 0.940 (3)
0.822 (2)

0.979 (5)
0.965 (4) -

ABS MET 0.947 (1,2)
0.912 (3)

0.924 (5)
0.718 (4) -

ABS HT 0.996 (3)
0.966 (4)

1.000 (3-5)
0.998 (1,2) -

GBM LGA 0.927 (3)
0.877 (1)

0.971 (3)
0.921 (1,2)

0.980 (5)
0.932 (4)

GBM MEN 0.919 (5)
0.852 (4)

0.956 (3)
0.900 (1)

0.938 (5)
0.889 (4)

GBM MET 0.690 (4)
0.618 (5)

0.739 (2)
0.620 (4)

0.691 (4)
0.631 (3)

LGA MEN 0.755 (2)
0.722 (5)

0.991 (3)
0.945 (4)

0.950 (1,2)
0.904 (4)

LGA MET 0.984 (5)
0.949 (4)

0.989 (5)
0.942 (4)

0.931 (3)
0.810 (1,2)

MEN MET 0.990 (5)
0.977 (1)

0.980 (3)
0.939 (1,2)

0.903 (2,5)
0.818 (4)

HT AA 0.801 (4)
0.693 (1,2)

0.998 (3)
0.928 (4) -

HT GBM 0.999 (5)
0.986 (3)

0.997 (3)
0.992 (4) -

HT LGA 1.000 (3)
0.883 (4)

0.988 (3)
0.922 (5) -

HT MEN 0.988 (3)
0.950 (4)

0.998 (3)
0.993 (1,2) -

HT MET 1.000 (3-5)
1.000 (1,2)

1.000 (4)
0.999 (3) -

Highest averages are in common characters whereas lowest averages are in italic. The classes are AA = Anaplasic Astrocytoma; ABS = Abscess; 
GBM = Glioblastoma; LGA = Low Grade Astrocytoma; MEN = Meningioma; MET = Metastases; HT = Healthy Tissue. The digit next to each number 
refers to the algorithm that achieved that result in that specific task: (1) linear kernel SVM; (2) radial kernel SVM; (3) Random Forest; (4) 3rd degree 
polynomial kernel SVM; and (5) sigmoid kernel SVM.



Abscesses and brain tumors MRS classification 191Res. Biomed. Eng. 2017 September; 33(3): 185-194

in class compositions and resampling strategies make 
comparisons between studies unreliable. In comparison 
to the study by Lukas et al. (2004), the most similar to 
the study presented here, which focused on 1.5 T long 
TE data, also from the INTERPRET project, using 
algorithms and resampling strategies similar to the 
ones used in this study similar results were found 
in the binary classification tasks. It is important to 
note that our low-grade glial tumors class consists of 
grade I-II astrocytomas, whereas the class studied by 
Lukas et al. consists solely of grade II astrocytomas.

Random Forests ranked high in most tasks while 
SVMs with linear and polynomial kernel ranked generally 
lower. We believe this is in part due to the robustness of 
Random Forests, gained through ensemble averaging 
and attribute bagging, and in part due to the simpler 
hypothesis of the linear and polynomial kernel spaces in 
the case of the SVM. The Gaussian and sigmoid kernel 
SVMs ranked slightly better, and again this is most 
probably due to the highly flexible margin provided by 
these kernels in non-linear space.

The overlap of the classes consisting of metastases 
and glioblastomas was observed in all experimental 
conditions. This expected result is in agreement with 
several previous reports due to the aggressiveness level 
of these tumor types (Majós et al., 2004; Tate et al., 2003; 
2006): despite completely different cell morphology, 
metastases and glioblastomas have very similar spectra 
dominated by lipids. NAA is not expected in metastases, 
but normal tissue contamination is almost unavoidable in 
the spectroscopy of small single metastases. This led to 
the union of the two tissue types into one single aggressive 
tumors category in other studies (Majós et al., 2004; 
Tate et al., 2003; 2006); an identical strategy was 
followed in this work. However, the distinction between 
metastasis and glioblastomas is marginally higher for 
long TE than it is for short TE spectra. Ishimaru et al. 
(2001) found that glioblastomas are better resolved from 
metastases in long TE MRS than in short TE due to 
overlapping peaks and the dynamic range of the detector 
being dominated by lipids, diminishing the sensitivity 
to choline and creatine. This subtle difference suggests 
that long TE MRS might prove a better option to explore 
this task in the future with bigger samples.

Our study shows that pattern recognition allied to 
MRS achieves really high performance in the differential 
diagnosis of brain abscesses and several tumor types; 

one exception was related to glioblastomas. Indeed, 
Majós et al. (2009) report that MR spectroscopy achieves 
great levels in the discrimination between tumoral and 
pseudotumoral tissue. These results indicate that there 
are differences between abscess and most tumor types 
considering the spectra, even if not readily visible. 
Some implications include the possibility of better 
characterization of post-surgery brain lesions and the 
contribution to the establishment of differential diagnosis 
protocols. The diagnostic of brain abscesses is usually 
made with neuroimaging techniques and, as Lai et al. 
(2002) point out, there are some advantages regarding 
the use of diffusion weighted imaging (DWI) instead 
of 1H-MRS regarding imaging time, despite conflicting 
findings in the literature regarding DWI.

The difficult classification task between glioblastomas 
and abscesses shows there is great similarity between both 
spectral types, as expected due to the presence of lipids 
in both due to necrosis (Lai et al., 2002). The differential 
diagnosis can be made through perfusion MRI, as abscesses 
often demonstrate lower rCBV in the peripheral region 
than high grade gliomas (Chan et al., 2002).

A well-known finding was confirmed using our 
methodology. Anaplastic astrocytomas showed overlap 
with glioblastomas and metastasis and heavy overlap 
with low grade glial tumors (Majós et al., 2004). 
This behavior was expected as its metabolic profile 
has similarities to other tumor types and the diagnosis 
of anaplastic astrocytomas in the regions of one brain 
does not preclude the existence of other lower grade 
gliomas in other regions, augmenting the possibility of 
contamination. In this work, 3.0 T spectra of anaplastic 
astrocytomas and glioblastomas achieved a good AUC. 
One possible explanation is that the use of higher 
field intensity contributes to a better quantification 
of J-coupled metabolites somehow related to glioma 
grading. Alternatively, operator bias could have favored 
the VOI selection in the 3.0 T dataset.

No differences were obtained for short and long TE 
data. A previous study showed that short TE achieved 
just slightly better accuracy than long TE in the binary 
discrimination between tumor types, and using both 
TEs improved accuracy (Majós et al., 2004), without 
considerations about the optimization of thresholds or 
the separability measured by AUC. In this paper, similar 
results were obtained for the two magnetic field strengths 

Table 4. Multiclass classification results and radiological findings comparison. Four cells sum to 100% when taken together in each echo-time 
(TE) evaluation.

MRS classification findings

1.5 T long TE 1.5 T short TE

Correct Wrong Correct Wrong

Radiological findings
Correct 81.4% 12.4% 71.4% 21.6%
Wrong 5.3% 0.9% 4.7% 2.3%
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data. This might be due to the robustness of magnetic 
resonance spectroscopy metabolite concentration estimation 
through LCModel, even for spectra of different quality. 
3.0 T spectra underperformed compared to 1.5 T spectra 
in the multiclass study. Unbalanced classes and smaller 
sample size are possible causes for this.

The difference in accuracy between the radiological 
diagnosis and the classification results for the long TE 
1.5 T spectra is small, but evident. This is probably due 
to other information available to the radiology expert, 
like the shape of the tumor, the occurrence of other 
primary tumor in other regions, or tumor recurrence. 
In short TE 1.5 T spectra, the difference in accuracy is 
bigger in favor of the radiological diagnosis. However, a 
deeper analysis would be necessary as many instances 
where the classification was correct were not counted 
due to ambiguity in the radiological decision, as it does 
not limit itself to the classes in the present study and has 
a much broader scope. The complementary character of 
the application of classification algorithms to radiological 
differential diagnosis is evident, since in several instances 
its output was correct when the radiological finding failed. 
A useful aspect of the use of classification algorithms in 
these tasks is shown by the overlap of the radiological 
findings and the classification results. When both the 
radiologist and the classification agree on the assigned 
class higher accuracy is guaranteed in either long or 
short TE spectroscopy when compared to the best 
individual results. If they disagree, the radiologist is 
usually right more often. This suggests a strategy that 
ensures higher confidence to the radiological diagnosis 
when both diagnoses are the same.

The comparison between classification algorithms 
is not within the scope of this study. Instead, we aim to 
show which tasks and how well classification algorithms 
can perform in the classification of brain tumor magnetic 
resonance spectra. A drawback in this strategy is we 
may end with suboptimal models, on the other hand, 
the effects of overfitting are mitigated.

The number of samples is the biggest limitation 
regarding the performance of the study. We suggest 
this favors the dataset with 1.5 T long TE spectra, the 
biggest by a large margin. The quality of the spectra, 
specially 1.5 T short TE spectra, may have an impact on 
the final performance but those are the conditions found 
in the clinical environment and so the results should still 
be representative. From combinatorial analysis on our 
resampled data, the probability of randomly separating 
sampled metastasis and normal tissue samples in the long 
TE 1.5 T dataset is approximately 0.1%, and repeating 
that one hundred times is even less probable. This is 

also true for other tasks where the mean of resampled 
AUC evaluations reach unity.

Magnetic resonance spectroscopy also has its 
limitations, such as inherent variability from the 
hardware and possible spectral artifacts induced by static 
field inhomogeneities or crusher gradients amplitudes 
(Barreto et al., 2014). We believe the earlier acquisitions 
from the INTERPRET databases might suffer more from 
noise, since their acquisition were performed with older 
equipment, as it also depends on spectral resolution and 
the number of averages.

Using a robust validation technique and five classification 
algorithms, our work showed the classification of MR 
spectra of brain masses consistently achieves great 
performance measured by high AUC and could open new 
venues in the differential diagnosis of brain tumors and 
brain abscesses. Our results also provide information on 
which differential diagnosis are deemed easy to solve 
using only magnetic resonance spectroscopy information 
in three experimental conditions: 1.5 T long TE, 1.5 T 
short TE and 3.0 T long TE point-resolved spectroscopy 
(PRESS) setups. Previous results from the literature 
were confirmed as well. We also showed how the 
accuracy of machine learning methods compare to the 
radiological diagnosis in both 1.5 T short TE and 1.5 T 
long TE PRESS single-voxel spectra using only spectral 
information as input variables. A strategy to improve 
the accuracy confidence of the radiological diagnosis is 
provided, showcasing how the use of machine learning 
algorithms in the differentiation of brain tumors and 
abscesses can potentially improve the diagnosis.
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