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Introduction
It has long been known that delivering heat to tumoral 

tissues can be an efficient ally to combat cancer (Crile, 
1961). For example, increasing tissue temperature in the 
range 42-45oC (hyperthermia) can improve chemotherapy 
and radiotherapy efficacy (Goldberg et al., 2000; Wust et al., 
2002). Furthermore, the so-called local thermotherapy 
consists in providing heat to precise locations within 
tissues, to increase temperature in the range 50-100oC, 
killing cancer cells by thermal ablation and preserving 
healthy tissues (Goldberg et al., 2000).

Most of the thermotherapy techniques consist 
in delivering heat to superficial tumors by placing 
antennas in contact with its surface to emit microwaves 
or radiowaves, heating the area through radiation 
absorption (Wust et al., 2002). However, other methods 
have been developed such as photothermal therapy 
(Steger et al., 1989), high intensity focused ultrasound 
(Crouzet et al., 2010) and magnetic hyperthermia 
(Pankhurst et al., 2003).

Temperature monitoring and application time are 
crucial steps in thermal therapy and have to ensure 
safety limits of delivered heat, minimizing damages 
in healthy tissue and increasing control, efficacy, and 
safety of applications (Larina et al., 2005; Welch and 
van Gemert, 2011). Researchers have demonstrated 
temperature dependence of acoustic wave propagation 
speed (Nasoni et al., 1979) and, based on this idea, 
several studies using ultrasound imaging to monitor 
temperature were conducted in the 90’s (Maass-Moreno 
and Damianou, 1996a; Maass-Moreno et al., 1996b; 
Simon et al., 1998; Straube and Arthur, 1994; Ueno et al., 
1990), generally using speckle tracking algorithms to 
calculate echo-shifts in the ultrasound images (Seo et al., 
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2011). Energy of ultrasonic backscattering (Arthur et al., 
2003) and tissue attenuation (Ueno et al., 1990) are also 
known to be dependent on temperature and have been 
proposed as methods to monitor temperature using, for 
example, the gray level information in B-mode images 
(Alvarenga et al., 2017; Teixeira et al., 2014). Later, in 
the 2000’s, photoacoustic (PA) imaging was proposed 
as a technique for temperature estimation based on PA 
signal amplitude temperature dependence (Larina et al., 
2005; Pramanik and Wang, 2009; Schüle et al., 2004; 
Shah et al., 2008). Temperature estimative using PA 
imaging can be an interesting approach due to its 
good spatial resolution and optical contrast besides 
being capable of imaging at greater depths than purely 
optical techniques (Wang and Hu, 2012; Xu and Wang, 
2006). Generation of PA-based thermal images during 
thermotherapy procedures has been investigated by 
analyzing the laser-induced pressure profile in PA images 
(Larina et al., 2005).

Several studies reported the use of PA imaging to 
estimate temperature only for single point or spatial 
averages of changes in PA images (Larina et al., 2005; 
Pramanik and Wang, 2009). Other studies expanded these 
measurements to a 2-D spatial temperature distribution 
in tissue using PA images for temperature monitoring 
during hyperthermia procedures (Ke et al., 2014; 
Kim et al., 2014; Pramanik and Wang, 2009; Shah et al., 
2008; Yao et al., 2013). However, the procedure used for 
thermal images formation or how the parameters used 
in the processing steps were chosen are not detailed 
described in those studies. In the present paper, four 
different mathematical methods to estimate variation in 
PA signal amplitude were investigated and all parameters 
used in the data processing were optimized using an 
evolutionary genetic algorithm (GA).

Evolutionary algorithms have been applied in 
several studies, for example: curve fitting, image and 
signal processing, economic modelling and medicine 
(Rozenberg et al., 2012). This form of programming 
works using a quality criterion to evolve a population of 
candidate solutions following basic principles of Darwinian 
evolution (Eiben and Smith, 2015; Rozenberg et al., 2012). 
Thus, a population of solutions, which is represented 
by the parameters used during signal processing steps 
for thermal imaging formation, was evolved by a GA 
to optimize PA temperature estimation.

Methods

Photoacoustic signal temperature dependence

In PA imaging, short pulses of light are absorbed by 
biological tissue, causing local thermal expansion and 
subsequent acoustic wave emission. The pressure wave 

magnitude is described by optical fluence, absorption 
coefficient and thermoelastic properties of the material 
(Beard, 2011; Xu and Wang, 2006). The Grueneisen 
parameter mathematically represents these thermoelastic 
properties (Shah et al., 2008). Therefore, PA signal 
amplitude is expressed as (Beard, 2011; Xu and Wang, 
2006):
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 is the Grueneisen parameter, 

which is temperature (T) dependent. β is the thermal 
coefficient of volumetric expansion, c is the propagation 
speed of the acoustic wave and pC  is the heat capacity 
at constant pressure.

Shah et al. (2008) mentioned that for water and the 
majority of soft tissues, the relationship between PA 
signal amplitude and temperature is potentially linear 
for temperatures in the range of 10°C to 55°C, due to the 
linear dependence of β and c with temperature (Bamber 
and Hill, 1979; Duck, 1990). Thus, the temperature 
dependence of PA signal amplitude can be described 
using a linear model (Shah et al., 2008):
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In Equation 2, P is the pressure amplitude of the wave 
generated by the photoacoustic effect, ∆P is the pressure 
amplitude variation when the temperature changes by ΔT 
and α represents the linear approximation slope and has 
been experimentally determined in several studies for 
different materials. In water, for example, an increment 
of 51% in PA signal amplitude for a 10oC increase in 
temperature was observed (Shah et al., 2008).

Phantom production
A tissue-mimicking phantom was manufactured using a 

solution of gelatin (Bloom 250; Gelita, Eberbach, Germany) 
and agar powder (RM026; Himedia Laboratories - LLC, 
Kennett Square, USA) in distilled water at dry-weight 
concentrations of 6% and 2% of water mass, respectively. 
Formaldehyde in a weight concentration of 2% of water 
mass was added to increase the melting temperature 
and stiffness (Hall et al., 1997). The phantom material 
was produced according to the method described by 
Pavan et al. (2010). The cubic phantom had dimensions of 
5.30 cm x 5.40 cm x 5.00 cm. A cylindrical inclusion with 
1.00 cm in length and 0.37 cm in radius, manufactured 
using gelatin at a dry-weight concentration of 6%, was 
placed within the phantom. Iron oxide nanoparticles 
(Fe3O4) with the particle size ranging from 20 nm to 
30 nm (Nanostructured & Amorphous Materials Inc., 
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Houston, TX, USA), at a dry weight concentration of 
1%, were added to act as optical absorber within the 
inclusion to improve PA image contrast. Glass beads 
were added, at a dry-weight concentration of 2%, in both 
the inclusion and background to act as scattering sources 
to the PA waves. Moreover, the presence of magnetic 
nanoparticles in the inclusion can be thought as a tumor 
being treated under magnetic hyperthermia conditions.

Photoacoustic images acquisition

The experiments were performed acquiring PA 
images of the phantom submerged in a tank filled with 
water at controlled temperature. The water temperature 
in the tank was controlled using an electrical resistor. 
A fiber optical thermometer (Qualitrol - Neoptix, Québec, 
Canada) with resolution ±0.1°C and accuracy ±1°C was 
used to measure the internal temperature of the phantom. 
A total of 29 PA images were acquired at each degree in 
the range 36°C-41°C, after reaching thermal equilibrium.

Laser excitation was performed using a Nd:YAG 
laser (Quantel, model Brio, Les Ulis, France) operating 
at 20 Hz pulse repetition frequency, with 5 ns pulse 
duration, wavelength 512 nm and fluence around 
7.6 mJ.cm-2. Laser energy was monitored by a power 
meter (FieldMax II, Coherent, Santa Clara, USA) during 
the entire experiment to correct eventual laser energy 
variation. A diffuser (DG100-600 – MD, Thorlabs, 
Newton, USA) was used to expand the laser beam, 
increasing excitation area.

The generated PA waves were acquired using a diagnostic 
ultrasound system (Sonix RP, Ultrasonix, Richmond, 
Canada) connected to a linear array transducer (L14-5/38) 

composed by 128 piezoelectric elements with a measured 
central frequency of 5.0 MHz. PA radiofrequency (RF) 
signals were collected at a 40 MHz sampling frequency 
with 10-bit analog-to-digital converter. PA images 
were reconstructed using a delay-and-sum algorithm 
(Park et al., 2008). A depiction of the experimental setup 
is shown in Figure 1.

Signal processing

Due to variations in the speed of sound, PA images 
acquired at different temperatures appear to be moving 
towards the transducer. These displacements were estimated 
using a cross-correlation algorithm (O’Donnell et al., 
1994) and then compensated for by applying a registration 
algorithm. After motion compensation, changes in PA 
signal amplitude for different temperatures were evaluated 
using a 1-D hanning window ( )τHw  moving across the 
entire images with a certain overlap percentage, generating 
maps of PA signal amplitude variation. These amplitude 
variation maps were submitted to moving average filter 
for soften the peaks.

PA-RF (RF signal generated by PA effect) windowed 
signal can be described as:

( ) ( ) ( ) ( )= τ +Hs t p t w n t  (3)

where ( )p t  is the PA detected signal and ( )n t  is the 
zero-mean additive noise.

Variation in PA signal amplitude within the moving 
window limits, for a pair of signals, was calculated using 
four different methods.

Figure 1. Experimental setup used to acquire the PA images of the phantom at temperatures varying from 36°C to 41°C.



Uliana JH, Sampaio DRT, Carneiro AAO, Pavan TZRes. Biomed. Eng. 2018 June; 34(2): 147-156 150150/156

Peak-to-peak (Pramanik and Wang, 2009; Wang et al., 
2009):
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Square root of autocorrelation maximum value 
computed using Wiener-Khinchin theorem (Strube, 1985):
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where corrC  is the correlation coefficient between ( )targets t  
and ( )references t , and   is the complex Fourier transform.

Energy of the windowed signal (Arthur et al., 2003):
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For all methods a threshold was used to avoid the 
algorithm to compare low signal amplitude regions. 
This procedure consisted in comparing the amplitudes 
only if the peak-to-peak values of the PA signal within 
the window limits were greater than a percent of the 
maximum peak-to-peak value found in the entire image. 
If the peak-to-peak values within the window limits 
were less than this threshold, the ratio was considered 
to be null.

Mathematical methods to compare the PA signal 
amplitude were evaluated varying the window length and 
threshold level from 0.31 mm (1λ of the 5 MHz signal) 
to 1.55 mm (5λ) and 5% to 20%, respectively. To obtain 
the thermal images, changes in PA signal amplitude 
were estimated by comparing PA images acquired at 1oC 
incremental temperatures. The amplitude variation was 
then integrated from 36°C to the current temperature.

The PA-based thermal images were obtained by 
applying a calibration factor to the final estimated 
amplitude variation. This calibration factor was 
calculated using a linear approximation of the mean 
signal amplitude variation within a region of interest 
(ROI) with dimensions of 7.0 mm x 8.53 mm, selected 
within the phantom inclusion region, as a function of 

temperature. For each combination of signal processing 
parameters, a different calibration factor was determined 
as the slope of a linear fit. The final PA-based thermal 
images, at each degree, were quantitatively evaluated 
in the same ROI by estimating the percent of pixels 
within a range of ± 1oC deviation from the actual 
temperature value.

Genetic algorithm
PA-based thermal images formation is greatly 

influenced by several signal processing parameters, such 
as threshold value, window length, overlap percentage, 
and dimensions of moving average filter mask. Since 
it can be challenging to empirically choose the best 
combination of these parameters, we propose to use 
GA for this optimization (Whitley, 1994).

GA consisted in generating a population of 100 candidate 
solutions composted of window length, threshold value, 
size of moving average mask (width and height) and 
window overlap. The quality criterion, also known 
as fitness function, was the percent of pixels within a 
range of ± 1°C deviation from the actual temperature 
value. The candidate solutions population for the next 
generation was selected using of elitism and roulette 
wheel, i.e., a portion of next generation individuals 
(5%) was completed with solutions that presented the 
best fitness values; while the rest of the population 
(until complete 100 candidate solutions) was randomly 
selected. This random selection was created by the 
roulette wheel, where each solution has a probability 
to be chosen and this probability is proportional to the 
fitness value. The mutation and crossover coefficients 
used were equal to 5% and 40%, respectively. The defined 
stopping criteria was a population with 100 generations 
evolution, or by obtaining a candidate solution where 
100% of pixels were within a range of ± 1°C deviation 
from the actual temperature value, for all temperatures.

Figure 2 illustrates the imaging processing and 
optimization using GA. Figure 2a shows a flowchart 
representing all steps involved in the PA images 
processing to generate the thermal images and Figure 2b 
shows another flowchart of the GA used to optimize the 
parameters used for thermal image formation.

Results
Figure 3 shows the B-mode, 3(a), and the PA, 3(b), 

images of the phantom. The reconstructed PA image 
(envelope of the PA-RF signal) is displayed. The B-mode 
(log-compressed envelope of the RF pulse-echo signal) 
image shows that inclusion and background had very 
similar echogenicity, what is expected since they were 
manufactured using the same glass beads concentrations. 
On the other hand, the inclusion is well visualized with 
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good contrast in the PA image due to the higher optical 
absorption of the magnetic nanoparticles compared to 
the rest of the phantom.

Figure 4 shows examples of PA-based thermal images, 
mapping temperature variation of 3oC, generated using 
different mathematical methods to estimate PA signal 
amplitude change. For these examples of thermal images, 
the processing parameters were arbitrarily chosen: window 

length of 3λ with 70% overlap, moving average filter 
using a mask size of 0.26 mm x 2.13 mm in height and 
width, respectively, and 10% threshold.

Although the images in Figure 4 show, in general, 
similar aspects, it should be recalled that for each case a 
different calibration factor was used to transform signal 
amplitude variation into temperature. Figure 5a shows 
the calibration factor obtained for the different methods. 
This result shows that the calibration factor can present 
variations higher than 20%, depending on the chosen 
method and parameters used during signal processing. 
Figure 5 also shows the percentage of pixels within ±1°C 
range, in the ROI, for different temperatures, threshold 
levels and window lengths. The other parameters were 
arbitrarily chosen, i.e., moving average mask size of 
0.26 mm x 2.13 mm and 70% overlap. Figure 5b shows 
the percent values as a function of phantom temperature 
using fixed values for window length and threshold 
level (3λ and 10%), Figure 5c shows the values as a 
function of window length when temperature variation 
and threshold were fixed (ΔT = 3oC and 10%), and 
Figure 5d shows the dependence of threshold level used 
for window length 3λ and ΔT = 3°C.

Once the calibration factor was obtained, the 
thermal images were quantified to access the estimated 
temperature distribution. For example, figure 6 shows 
histograms of estimated amplitude variation within the 

Figure 2. (a) Flowchart of the processing steps to calculate the amplitude ratio between two PA images acquired at different temperatures, (b) Diagram 
describing the GA used for the signal processing parameters optimization.

Figure 3. (a) B-mode and (b) PA images of the phantom acquired at 36°C.
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ROI presented in figure 4 for temperatures of 37°C, 39°C, 
and 41°C (See Figure 6a, b and c, respectively). In this 
case, the amplitude variation was estimated using the 
peak-to-peak technique. In these histograms, the dashed 
lines in red show the pixels within ± 1oC deviation from 
the true temperatures.

The computational times demanded to generate the 
PA-based thermal images using each mathematical method 
described, by averaging all 29 frames, were calculated 
using as processing parameters the same arbitrary values 
used to produce the example images of figure 4. Since 
the results shown in Figure 5 demonstrated very similar 
behaviors for all four methods, only the peak-to-peak 
was used in GA due to lower computational demand 
(0.84±0.03s) compared to integral of the modulus 
(0.96±0.03s), autocorrelation (1.35±0.03s) and energy 
of the signal (2.59±0.07s). Table 1 shows the mean 
optimized processing parameters obtained by GA after 

ten executions. In all cases, the stopping criterion was 
the evolution of 100 generations.

As can be seen in Figure 7(a), the percentage of pixels 
within ±1oC in the ROI after optimization of imaging 
parameters by GA becomes more accurate than that 
obtained by using arbitrary imaging parameters (Figure 4). 
Finally, Figure 7b shows the PA-based thermal images 
generated using the optimized processing parameters.

Discussion
Increasing tissue temperature can be an ally to 

fight diseases such as cancer. Rising tumoral tissue 
temperature to 42-45oC can improve chemotherapy and 
radiotherapy efficacy (Goldberg et al., 2000; Wust et al., 
2002). When biological tissue temperature is maintained 
between 47 and 50°C, for more than 10 minutes, or 
above 50°C for 4 to 6 minutes or even between 60 and 
140°C for a few seconds, a possible consequence is 
protein denaturation and cell death (Habash et al., 2006). 
Therefore, monitoring application time and temperature 
during thermal treatment is crucial step to improve 
treatment output and assure patient safety.

Previous studies showed that PA images are sensitive 
to monitor temperature variation during hyperthermia 
procedures (Ke et al., 2014; Kim et al., 2014; Shah et al., 
2008; Wang et al., 2011). However, to the best of our 
knowledge, no study compared the performance of 
different approaches to generate PA-based thermal images.

Studies comparing the performance of different 
algorithms to improve the process for medical image 
formation are of great importance. In ultrasound imaging, 
for example, the performances of time-delay estimators 
were compared to improve Doppler and elastography 
imaging (Pinton et al., 2005; Viola and Walker, 2003). 
The performances of these algorithms were further explored 
to extract medium vibration and estimate viscoelastic 
parameters from ultrasonic signals (Costa-Júnior et al., 
2017a; 2017b). Based on the same idea, the present 
study proposed to evaluate the performance of different 
methods and the influence of different signal processing 
parameters to generate PA-based thermal images. For this 
purpose, PA images of a gelatin phantom presenting good 
PA contrast (see Figure 3) were acquired at different 
temperatures; the temperature within the phantom was 
assumed to be uniform. Subsequently, the percentage 
of pixels in an ROI with calculated temperatures within 

Figure 4. Examples of PA-based thermal images generated using different 
mathematical methods, for a temperature variation of 3°C. The method 
used is indicated on the top of each image.

Table 1. Optimized processing parameters found using GA.

Window length (λ) Overlap (%) Height of moving 
average mask (mm)

Width of moving 
average mask (mm) Threshold (%)

2.5 ± 1 60 ± 10 0.42 ± 0.14 4.25 ± 0.90 7.0 ± 2.0
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a limit of ±1°C deviation from the actual temperature 
was analyzed.

A crucial step in transforming the PA-signal amplitude 
variation into temperature is the determination of the 
calibration factor. Figure 5a shows that this parameter 
is greatly affected by the method used to estimate the 

PA-signal amplitude changes. This result shows that 
peak-to-peak was more sensitive to temperature variation 
compared to integral of the modulus, energy of the signal 
and autocorrelation methods. For all four techniques, the 
sensitive decreased for window lengths greater than 2λ. 
In general, the calibration factor fluctuated more than 20% 

Figure 5. (a) Calibration factor obtained for different window lengths and mathematical methods; percent of pixels within ±1°C range (b) as function 
of temperature using a fixed window length 3λ and threshold 10%; (c) as function of window length for a temperature variation of 3°C; and (d) as 
function of threshold level using a fixed window length 3λ and temperature variation of 3°C.

Figure 6. Histograms of PA-based thermal images calculated for (a) 37°C, (b) 39°C and (c) 41°C. 
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for the different methods and parameters used. On the 
other hand, the accuracy of the images was improved 
when increasing the window length from 1λ to 2λ and 
remained almost stable for greater window lengths for all 
four methods. Previous studies have already demonstrated 
the drastic impact of varying window length to estimate 
time-delay between a pair of ultrasound signals for 
Doppler and elastography applications (Pinton et al., 
2005; Viola and Walker, 2003).

Figure 5b shows that, for all mathematical methods, 
the accuracy of temperature measurements decreased 
with temperature. Few factors can explain this behavior. 
First, at higher temperatures the increase in speed of 
sound creates greater apparent displacements. These 
displacements reduce the similarity between PA images, 
increasing errors in the amplitude comparison procedure. 
Also, these higher displacements enhance the possible 
error caused by the co-registration algorithm. Second, 
the thermal images for temperature variations higher than 
1°C are obtained by integrating the amplitude variation 
maps at incremental temperatures. This cumulative 
procedure can accumulate errors; therefore, diminishing 
the accuracy of the images. The third explanation is that 
the acceptable error we adopted here (±1°C) is more 
significant when mapping 1°C variation than for 5°C 
increment, for example. This observation is easily verified 
by analyzing the histograms in Figure 6. Naturally, the 
temperature distribution broadens for higher temperature 
variations, reducing the number of pixels within the 
acceptable error. Finally, thermal diffusion can be more 
pronounced at higher temperatures, decreasing the accuracy 
of the values calculated to obtain the thermal images. 
Since the temperature inside the phantom was being 
constantly monitored and the phantom was immersed in 
a water tank, we believe that homogeneous temperature 
distribution within the phantom was achieved.

The results in Figure 5 show equivalence among 
all mathematical methods when analyzing the thermal 
images generated using different window lengths and 
threshold values at different temperatures. For optimizing 
the processing parameters using GA, the peak-to-peak 
method was chosen, since it demands less computational 
time and showed more sensitivity, see Figure 5a, than 
the other mathematical methods studied.

The arbitrary parameters used to generate the 
thermal images shown in figure 4 were chosen based 
on the apparent best combination observed in Figure 5. 
However, visually determining the best condition in 
a multivariate problem can lead to moderate outputs. 
Therefore, in this study the evolutionary programming 
was used to optimize this procedure. It is interesting to 
observe that the optimized values (Table 1) for threshold 
and window length differed from those that were the 
apparent obvious the best choices in Figure 5. The results 
in Figure 7a show improvement in the accuracy to map 
temperature variation, especially at higher temperatures. 
Increments of around 12.5% in the amount of pixels 
within the acceptable error of ±1°C were observed 
when ΔT = 5°C.

Parameters optimization using GA can be of simple 
implementation and can be easily adapted from one 
application to another (Eiben and Smith, 2015). The most 
important limitation of GA is the lack of guarantee to 
reach an optimal solution in finite amount of time, 
i.e., the dependence of population size and number of 
generations to find global optima (Buczak et al., 2001). 
In this study, population evolution over 100 generations 
was empirically found to be a good tradeoff between 
computational demand and improvement in image quality. 
The total time spent in the optimization shown here was 
around 23 hours. We verified that the gain achieved by 
using, for example, 200 generations was not justified 
by the increase in computational demand.

Figure 7. (a) Amount of pixels within ±1°C range for the parameters obtained before and after optimization using GA; (b) Optimized PA-based 
thermal images calculated for temperature variations of 1°C, 2°C, and 5°C.
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The results observed in this study are dependent 
on the setup, composed of a linear probe with limited 
bandwidth, and the sample used. Different setups could 
lead to different sensitivity and accuracy in temperature 
mapping. It is worth noting that different calibration factor 
values have been reported, depending on the type of tissue 
analyzed and setup used (Ke et al., 2014; Larina et al., 
2005; Shah et al., 2008; Wang et al., 2011). Therefore, 
the merit of the present paper was to demonstrate that 
signal parameters and methods involved in tracking PA 
signal amplitude changes, due to temperature variation, 
drastically affected the sensitivity and accuracy of thermal 
images formation. We also demonstrated that a simple 
evolutionary algorithm could improve the accuracy of 
temperature mapping by, on average, 7.5%. Consequently, 
we strongly advise the researchers interested in using 
PA imaging to monitor the temperature in hyperthermia 
procedures to evaluate the sensitivity and accuracy of 
their method using a similar experiment described here. 
Optimizing the parameters to improve accuracy is also 
recommended.

In this study, the performance of different algorithms 
to generate PA-based thermal images by tracking changes 
in PA signal amplitude was evaluated. The results 
demonstrated that signal processing parameters, such 
as window length, threshold level and dimensions of 
moving average filter, and mathematical methods used to 
track PA signal amplitude variation, due to temperature 
variation, affected the sensitivity and accuracy of the 
thermal images formation. The sensitivity, for example, 
fluctuated more than 20% depending on the methods and 
parameters used. The peak-to-peak method presented 
the best combination of accuracy, sensitivity and 
computational demand. The optimized signal processing 
parameters lead to improved performance. For example, 
for a temperature variation of 4°C, 82% of the pixels 
estimated temperature within the acceptable error, 
while for the images obtained using arbitrarily chosen 
parameter only 71% were.
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