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Diabetes classification using a redundancy reduction preprocessor
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Abstract Introduction Diabetes patients can benefit significantly from early diagnosis. Thus, accurate automated 
screening is becoming increasingly important due to the wide spread of that disease. Previous studies in 
automated screening have found a maximum accuracy of 92.6%. Methods: This work proposes a classification 
methodology based on efficient coding of the input data, which is carried out by decreasing input data 
redundancy using well-known ICA algorithms, such as FastICA, JADE and INFOMAX. The classifier used 
in the task to discriminate diabetics from non-diaibetics is the one class support vector machine. Classification 
tests were performed using noninvasive and invasive indicators. Results: The results suggest that redundancy 
reduction increases one-class support vector machine performance when discriminating between diabetics and 
nondiabetics up to an accuracy of 98.47% while using all indicators. By using only noninvasive indicators, an 
accuracy of 98.28% was obtained.  Conclusion: The ICA feature extraction improves the performance of the 
classifier in the data set because it reduces the statistical dependence of the collected data, which increases the 
ability of the classifier to find accurate class boundaries. 
Keywords: Diabetes, Clustering, Efficient coding, Independent Component Analysis, Support Vector 

Machine.

Introduction
Diabetes is a disease caused by the pancreas failing 

to produce insulin or when the body cannot effectively 
process this hormone. Despite an increasing amount of 
information about the disease, traditional data analysis 
approaches have become inefficient, and automated 
methods for efficient extraction of information are 
essential for diagnosis. It has been suggested that 
applying machine learning to medical analysis may 
increase diagnostic accuracy and reduce costs and 
human resources (Kayaer and Yildirim, 2003).

Many studies have contributed to the improvement 
of the classification of diabetes by using the Pima 
Indian database, as is shown in Table 1. For example, 
Byeon et al. (2008) used genetic algorithms (GAs) and 
prototyped selection methods with an accuracy rate of 
92.60%, which to the best of our knowledge achieves 
the best performance to date. Patil et al. (2010) used 
a hybrid prediction model with an accuracy rate of 
92.38%. Lee and Wang (2011) used a fuzzy expert 
system with an accuracy rate of 91.20%, and Polat 
and Güneş (2007) used principal component analysis 
(PCA) with an adaptive neuro fuzzy inference system 
with an accuracy rate of 89.47%. The proposed method 
adopts the basic idea of Byeon et al., which removes 
redundancy in a database by means of GAs.

Table 1 also presents other relevant studies, and the 
general conclusion is that the automatic classification 
of diabetes, at least for a homogeneous population, 

can be performed with high accuracy. However, some 
features are invasive and preclude the general triage 
of diabetes. Moreover, there is room for improvement, 
which can result in more confidence in machine 
learning techniques.

An idea that has been successfully employed is 
feature extraction prior to classification. This can reduce 
redundancy in data. Essentially, feature extraction 
methods can be divided into two approaches. In the 
first approach, the feature extractor and classifier are 
trained together, and in the second approach they are 
trained independently. For example, Hild et al. (2006) 
proposed an information theoretic methodology in order 
to select features for any classifier. In this regard, PCA 
is commonly employed to project the input data to a 
subspace that preserves maximal power and where the 
directions associated with smaller eigenvalues can be 
pruned, which effectively creates an orthogonal space 
for the features of reduced dimension. However, PCA 
limits the use of data to second order statistics (Polat 
and Güneş, 2007). Although other studies used different 
techniques during the feature extraction phase, such 
as a GA (Byeon et al., 2008) and linear discriminant 
analysis (LDA) (Çalişir and Doğantekin, 2011), 
their results showed reasonable accuracy but did not 
utilize the full statistical information contained in the 
features. However, we believe that feature extraction 
is a key intermediate step in classification because it 
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simplifies the design of classifiers. In this paper, we 
propose an information theoretic approach for feature 
extraction. The proposed method uses higher order 
statistical information about the collected data in 
order to provide a projection space, which, in contrast 
to PCA, preserves better the information contained 
in the data cloud. Our method uses independent 
component analysis (ICA) decomposition. ICA uses 
higher-order statistical information about input data; 
thus, it has the potential to improve the separability 
of classes in the projected space, thus improving the 
performance of the One-class support vector machines 
used here (Costa et al., 2011; Lucena et al., 2011; 
Sample et al., 2005; Smith and Lewicki, 2006).

Methods
Computer Aided Diagnosis (CAD) techniques may 

assist in diabetes treatment by preventing complications 
of the disease. Consequently, they reduce social and 
economic costs, because diabetes has a decade long 
asymptomatic phase which, if not diagnosed early, can 
cause complications (Silva et al., 2014). Therefore, 
we propose a CAD method with a methodology that 
can be summarized in the block diagram in Figure 1. 
The input data (1) are subjected to a feature extraction 
process (2) to create a new representation of the 
original data with minimum redundancy. The new 
representation, according to the extraction based on 
efficient coding, is the input for the one-class SVM 

classifier (3) that clusters the two classes. To model 
efficient coding, three algorithms which are already 
well tested in the literature were used to find a better 
way to represent the data: JADE, INFOMAX, and 
FastICA. In the following sections we will describe 
the methods used here.

Minimizing statistical dependency with 
efficient coding

Sensory processing studies have suggested that 
neural processes may deal with information by using 
the efficient coding strategy (Baddeley et al., 1997; 
Barros and Chichocki, 2002; Deweese et al., 2003; 
Doi et al., 2003; Hubel and Wiesel, 1962; Simoncelli 
and Olshausen, 2001). The fundamental assumption 
here is that data x colected by sensors is an unknown 
linear instantaneous mixture of unknown independent 
external stimulus s mixed by an unknown matrix 
A (i.e., A are the underlying “causes” of the observed 
characteristics) that were important in the formation 
of the observed data x.

Table 1. List of works-related the experiment with all indicators. In these works were used all clinical indicators of the PIMA database 
(invasive and non-invasive indicators).

Method Accuracy Reference
Proposed method with all indicators 98.47%

GA and Prot. Selec. 92.60% Byeon et al. (2008)
HPM 92.38% Patil et al. (2010)
Fuzzy 91.20% Lee and Wang (2011)

LDA-Wavelet SVM 89.74% Çalişir and Doğantekin (2011)
IFE-CF 89.48% Reddy and Reddy (2010)

PCA-ANFIS 89.47% Polat and Gunes (2007)
MAIRS2 89.10% Chikh et al. (2012)

LDA-ANFIS 84.61% Dogantekin et al. (2010)
ANN-FNN 84.24% Kahramanli and Allahverdi (2008)

GDA-LS-SVM 82.05% Polat et al. (2008)
C-HMLP 81.74% Mat Isa and Mamat (2011)

Fuzzy 79.37% Lekkas and Mikhailov (2010)
ANFIS 77.65% Ghazavi and Liao (2008)
Fuzzy 77.8% Luukka (2011a)
ANN 76.62% Jeatrakul et al. (2010)

OP-ELM 76.3% Miche et al. (2010)
IP-LSSVM 76.1% Carvalho and Braga (2009)

FSM-FuzzyEM 75.97% Luukka (2011b)
SVM 75.15% Li and Liu (2010)

Figure 1. Block diagram of the proposed methodology (Extracting 
features based on efficient coding + one-class SVM).
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The idea behind efficient coding is that the collected 
data is a combination of causes or basis functions 
that, in turn, produce the observations. Because the 
combined data usually becomes more redundant, the 
goal is to undo this increase in statistical dependence 
by performing ICA on the collected data. Although 
the space might be composed of nonorthogonal 
basis functions belonging to A, the projections s are 
statistically independent. This is where ICA appeals 
to efficient coding. Here, let x = (x1,x2,x3,...,xn)be a 
set of observations taken from the same data. Using 
x=As as training input, ICA learns the basis functions 
in the columns of a matrix A for the features such 
that the variables comprising vector s are mutually 
statistically independent (Hyvärinen and Oja, 2000; 
Comon, 1994). 

There are several ways to estimate the matrix, 
W where W=A-1 from the projection phase s=A-1x, 
and each method involves different algorithms. We 
have used three of the most used algorithms in our 
tests. These algorithms are reviewed in the following 
sections.

FastICA algorithm

The FastICA is a computationally efficient and 
well-tested algorithm. We assume that vector x is 
whitened by PCA, which is typical in ICA literature 
(Hyvärinen et al., 2001). The weight vector W is 
updated such that the projection y=WQT x maximizes 
the distance of the pdf (probability density function) 
to a Gaussian, where Q is the whitening matrix. 
This distance is measured by the negentropy J(y)) 
(Hyvärinen et al., 2001), which is expressed as follows.

( ) ( ){ } ( ){ } 2
J y E G y E G v ∝ −   (1)

Here, v is a zero mean Gaussian variable with unit 
variance and G is some nonquadratic function. We 
must run the FastICA algorithm repeatedly (i.e., up to 
the dimensionality of the collected data) to estimate 
the desired number of independent components.

Jade algorithm

The joint approximation diagonalization of eigen 
matrices (JADE) algorithm (Cardoso and Souloumiac, 
1993) takes the cumulant to find the mixing matrix. 
First, the whitening matrix Q and signal z = Qx are 
estimated. Next, the cumulants of the whitened 
mixtures Qz are computed. An estimate of the unitary 
matrix U is obtained by maximizing the criteria 
λzVi  by means of joint diagonalization. If λzVi is not 
exactly jointly diagonalizable, the maximization of the 
criteria defines a joint approximate diagonalization. 
An orthogonal contrast is optimized by finding the 

rotation matrix U such that the cumulant matrices 
are as diagonal as possible.

 arg min ( ),ˆT
z

i
U Off U Q U= ∑  (2)

The mixing matrix A is calculated as A = UQ-1, 
and the independent components are estimated as 
y = Wx = VTz, where W = UT Q.

Infomax algorithm

The algorithm proposed by Amari et al. (1996) 
takes mutual information I (X;Y), which is minimized 
using the natural gradient technique, thus maximizing 
the independence between components. Mutual 
information is given by

( ) ( ) ( ) , | ,I X Y H X H X Y= −  (3)

where H (X | Y) is the conditional entropy and 
H (X)  is the entropy of X. The conditional entropy is 
given by H (X;Y) = H (X,Y) - H (Y). Kullback–Leiber 
(KL) divergence can also be used to the same end. 
The KL divergence minimization uses an algorithm 
to estimate the separation matrix

( ) ( ) ( ) ( )1
T

tt t tW W I g y y W+
 = + η −   (4)

where t  represents a given approximation step and 
g(.) is a nonlinearity selected according to the output 
signals, i.e., generally, it is used for super-Gaussian 
distributions g (y) = tanh (y) and for sub-Gaussian 
distribution cases g (y) = y - tanh (y).

One-class Support Vector Machines

Support vector machines (SVM) and related kernel 
methods have become increasingly popular tools for 
data mining tasks, such as classification, regression, 
and novelty detection (Bennet and Campbell, 2000). 
Statistical classification can be achieved in multiple 
ways (Zhuang and Dai, 2006). Typically, multiclass 
classifiers that use data discriminatively to derive 
class boundaries are selected. Alternatively, one 
can independently construct a single classifier for 
each class using only data for the class and iterating 
until all classes are covered. This methodology 
does not use discriminative information in data; 
however, when there is inbalance between classes, 
this method may provide some advantages (Zhuang 
and Dai, 2006), i.e., it may improve poor results 
(Scholkopf et al., 2001). A common problem with 
discriminative approaches is that the decision boundary 
created by, for example, a two-class SVM, can result 
in a significant misclassification rate if they are not 
well separable (Kung, 1993).
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A one-class SVM constructs a classifier from 
only a set of labeled positive patterns called positive 
training samples (Burges, 1998; Manevitz and Yousef, 
2001). The one-class SVM strategy maps data into the 
feature space and then uses a hypersphere to describe 
the data. Therefore, this method requires information 
from a single class, and imbalanced datasets can be 
used without performance issues (Tran et al., 2003).

The process begins with a training set of points and 
assumes that a dataset has a probability distribution 
P in the feature space. Here, the goal is to find a subset 
S of the feature space such that the probability of a 
point P outside S is determined by an a prior condition 
specified by Equation 5.

( )0,1 ,v ∈  (5)
The solution to this problem is obtained by the 
estimation of a function f, which is positive in S and 
negative in the complement S. Schölkopf et al. (2001) 
developed an algorithm that returns a function f. This 
function takes values of +1 in a small region, i.e., the 
hypersphere, by capturing the largest number of data 
and takes values of -1 everywhere else.

( )
1         

 
1        

if x S
f x

if x S
+ ∈

= − ∈
 (6)

The algorithm can be summarized as a mapping of 
data into a feature space H by using an appropriate 
kernel function. The algorithm then attempts to separate 
data mapped from the source to a maximum margin.

In our context, we have training samples 
x1, x2, ..., xl that belong to class X, where X is a small 
subset of RN. Here, let Φ: X → H be the kernel that 
transforms the training samples to another space. 
Thus, to separate the set of source data, the following 
objective function in the primary form is minimized:

2min    i
i

lr
vl

− ρ + ζ∑

subject to

( ) [ ]2 2||    ,  0   i i ix c r toi lΦ − ≤ +ζ ζ ≥ ∈

where v∈ [0,1] represents the total number of training 
samples, r is an orthogonal array that separates the 
training samples from the source to a threshold 
ρ, l is the part of the training data rejected by the 
hypersphere, and Φ is used to reject the hypersphere 
training samples.

This optimization problem is solved with Lagrange 
multipliers. (Scholkopf and Smola, 2002).
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Equations 7 and 8 lay out the rejected hyper hold 
training samples, and Equation 9 reports c  (i.e., the 
center of the hypersphere), which can be expressed 
as the linear combination Φ (X) and can be solved in 
a dual form with the following optimization:

( )
,

min ( , ) ,  i j i j i i
i j i

K x x x xα α −∑ ∑

subject to

0  ,  1 .i i
i

l
vl

≤α ≤ α =∑

An important family of kernels is the radial basis 
function (RBF) used in the proposed method. The 
RBF is very commonly used in pattern recognition 
problems and is defined by

( )
2

, x yk x y e−γ −=  (10)

where γ > 0 is a user-defined bandwidth parameter 
(Scholkopf and Smola, 2002).

To evaluate classifier performance, it is necessary 
to quantify its sensitivity, specificity, and accuracy. 
In the diabetic classification problem, sensitivity 
measures the accuracy of the classifier to identify 
diabetics in the population, and specificity measures 
the accuracy of the classifiers to identify healthy people 
in the population. The validation is done using the 
following quantities:

1. True-positive (TP): Diagnosis of patients correctly 
classified as diabetic.

2. False-positive (FP): Diagnosis of nondiabetic 
patients classified as diabetic.

3. True-negative (TN): Diagnosis of patients correctly 
classified as nondiabetic.

4. False-negative (FN) Diagnosis of diabetic patients 
classified as nondiabetic.

and the accuracy of the classifier is defined by:

Sensitivity: TP/(TP + FN)
Specificity: TN/(TN + FP)
Accuracy: (TP + TN)/(TP + TN + FP + FN)
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Database descriptions
Here, we have used three databases. The first is the 

PIMA database (Blake and Merz, 1996), which has 
the disadvantage of being composed only of Indian 
females, which reduces the possibility of generalizing 
the results. To diminish this drawback, we have used two 
additional databases: a Brazilian database (Brasil, 2014) 
and an African–American database (Wang, 2014). 
These databases are composed of both genders, and 
the Brazilian data includes multiracial population. 
The PIMA database was obtained from the UCI 
(University of California, Irvine) repository of machine 
learning databases (Blake and Merz, 1996). This 
database was selected from a larger database held by 
the National Institutes of Diabetes and Digestive and 
Kidney Diseases. All patients were females aged at 
least 21 years of Pima Indian heritage.

We labeled the results as ‘0’ or ‘1,’ where ‘1’ is 
a positive test for diabetes and ‘0’ is a negative 
test. There were 268 (34.9%) cases in class ‘1’ and 
500 (65.1%) cases in class ‘0.’ In addition, there were 
eight clinical indicators:

1. Number of pregnancies.
2. Plasma glucose concentration determined by a 

2-hour oral glucose tolerance test.
3. Diastolic blood pressure (mmHg).
4. Tricep skin fold thickness (mm).
5. 2-hour serum insulin (mu U/ml).
6. Body mass index.
7. Diabetes pedigree function.
8. Age (years).
Data of the Brazilian database (Brazilian Unique 

Health System) (Brasil, 2014) comprised patients 
between 12 and 100 years. There were 500 (50%) cases 
classified as diabetics and 500 (50%) as nondiabetics. 
There were 14 noninvasive clinical indicators:

1. Age (years).
2. Systolic blood pressure.
3. Diastolic blood pressure.
4. Hip (cm).
5. Weight (Kg).
6. Height (cm).
7. Family antecedent of diabetes.
8. Tobacco use.
9. Sedentary lifestyle.
10. Overweight.
11. Heart attack.
12. Other coronapathies.
13. Stroke.
14. Amputation.
Clinical indicators 1 to 6 are continuous variables, 

and indicators 7 to 14 are discrete variables.
The African–American database was obtained from 

the University of Virginia’s School of Medicine. Data 
consists of 19 variables on 403 subjects obtained from 

a study conducted to understand the prevalence of 
obesity, diabetes, and other cardiovascular risk factors in 
central Virginia for African–Americans (Wang, 2014). 
There were 60 (14.88%) cases classified as diabetics 
and 343 (85.11%) as nondiabetics. Seven noninvasive 
clinical indicators were used in this database:

1. Age.
2. Weight (pounds).
3. Height (inches).
4. First systolic blood pressure (mmHg).
5. First diastolic blood pressure (mmHg).
6. Waist (inches).
7. Hip (inches).

Results
We performed different experiments to test the 

proposed methodology. For the PIMA database, we 
used all eight indicators shown in Table 2. Twenty 
percent of the 268 diabetic cases were used for 
training data, and the remaining 80% were used for 
test data, using the 20-fold cross-validation method 
(in a randomized fashion). For the nondiabetic case, 
we have used all 500 cases for testing data because 
it is not necessary to train the one-class SVM for 
both classes. Clinical indicators can be divided 
into two groups, invasive or noninvasive. In this 
case, indicators 1, 3, 4, 6, 7, and 8 are noninvasive 
indicators, and indicators 2 and 5 are invasive. We 
applied ICA decomposition on the full set using 
the FastICA algorithm and obtained matrix  A
with eight basis functions. Then, we projected the 
samples on the basis functions. These projections 
were input to the one-class SVM. A library for 
SVM development (i.e., LIBSVM (Chang and 
Lin, 2003)) was used for training and testing. The 
Gaussian gamma value was set at 0.00781 which 
was determined by cross-validation (cost value 
of 0.03125).

To illustrate the clustering, although we have eight 
features, we show the results after PCA processing 
in Figure 2a, for three features. In Figure 2b we plot 
three diferent features taken from the ICA output. 

Table 2. The PIMA database indicators used in experiments (All = all 
features, 6f = noninvasive features).

PIMA database clinical indicators All 6f
1. No. of pregnancies X X
2. Glucose concentration X
3. Diastolic blood pressure X X
4. Triceps skin thickness X X
5. 2-hour serum insulin X
6. Body mass index X X
7. Pedigree function X X
8. Age X X
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Last, we show in Figure 2c three features found by 
SVM. In this later case, it is important to remember 
that the data was preprocessed by PCA and ICA.

In the next experiment, the same process was 
applied to estimate the feature space by using ICA 
algorithms; however, we withdrew the invasive 
indicators (blood tests). The PIMA database indicators 
used in experiments are shown in Table 2. Moreover, 
six basis functions were selected to make the projection 
and create the input for the one-class SVM classifier, 
as shown in Tables 2 and 3. In addition, the Receiver 

operating characteristic (ROC) curves and results for 
the three ICA algorithms tests (FastICA, JADE and 
INFOMAX) without invasive indicators are shown 
in Figure 3 and Table 3, respectively.

To explore the generalization of the proposed 
methodology the Brazilian and African–American 
databases were tested. In this case, for each data base, 
considering only the noninvasive indicators during 
feature extraction phase, the FastICA algorithm was 
used. The results are shown in Table 4.

Figure 2. Three dimensional plot of three different features taken out of the eight original data.(a) three principal components found by PCA, 
whereas we show the diabetics in red and the nondiabetics in blue; (b) three independent components found by ICA; c) SVM (after PCA and ICA).
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Discussion
In this paper, we presented the use of an efficient 

coding technique to select features to classify patients 
as diabetic or nondiabetic. We used a framework based 
on three steps consisting of applying a PCA algorithm 
to whiten the data, followed by an ICA algorithm, 
which are both based on linear operations. We then 
applied a one class SVM classifier as can be observed 
clearly in Figure 2. Figure 2a shows that PCA could not 
cluster data appropriately. Figure 2b shows that ICA 

could group data more efficiently. However, we could 
only completely cluster data shown in Figure 2c after 
the SVM classifier. This can be understood in the 
following way. Let us firstly remember that we have 
two steps: the ICA training and the SVM classifier. 
We estimate the ICA basis functions either using the 
original diabetic or the non-diabetic database. It is 
important to emphasize that, while estimating the 
ICA basis functions, the original data is centered at 
zero (zero mean). Afterwards, we project the ICA 
decomposed data on the basis functions again to avoid 
the known scale and ordering indeterminancies. This 
leads to results shown in Figure 2c, where we can 
clearly see two well separated clusters. This occurs 
because each class in this data set happens to have its 
own mean that was found by the ICA preprocessing.

Note that other methods reported in the literature also 
used the same PIMA database. These methods included 
all data, i.e., both noninvasive and invasive clinical 
findings, as can be seen in first row of Table 3 and in 
Table 1. Our proposed method achieved an accuracy 
of 98.47%, but the others methods achieved lower 
accuracy. In addition, we conducted experiments 
without invasive data, such as insulin and glucose 
concentration. In this framework, we obtained an 
accuracy rate of 98.28% with the FastICA algorithm, 
as show in second row of Table 3. This indicates that 
even without invasive characteristics that are decisive 
in diabetes diagnosis, we can maintain very high 
classification accuracy, although slightly lower. The 
same trend is observed with other ICA algorithms; 
we obtained an accuracy of 99.57% with the JADE 
algorithm and 99.37% with the InfoMAX, see the 
third and fourth row of Table 3, respectively. To 
determine the consistency of this finding, we applied 
the proposed technique to two other databases, i.e., 
Brazilian and African–American databases, as is 
shown in Table 4. Equivalent results to those of the 
PIMA database were found, as is shown in Table 3 and 
Table 4. Although we obtained similar accuracy when 

Figure 3. ROC curves for different algorithms (FastICA, InfoMax, 
and Jade) and different databases.

Table 3. Results of ICA algorithms followed by one-class SVM using the features described in Table 2 (PIMA database). For noninvasive 
use (6f) an extraction was made with the three ICA algorithms most commonly used in the literature, the results are described herein.

Sensitivity Specificity Accuracy 95% Confidence Level
All (FastICA) 99.81% 98.34% 98.47% 0.22
6 f (FastICA) 99.05% 98.19% 98.28% 0.39
6 f (JADE) 99.92% 99.51% 99.57% 0.32

6 f (InfoMAX) 99.46% 99.35% 99.37% 0.27

Table 4. Test results of FastICA algorithm and one-class SVM for Brazilian data (12 features) and African-American data (five features).

Database Sensitivity Specificity Accuracy 95%Confidence Level
Brazilian 99.99% 99.63% 99.81% 0.13

African–American 98.88% 96.68% 97.01% 0.36
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we removed features, Figure 3 shows that we obtained 
smaller values for the true positive rate when we used 
only six features.

One question that might arise is why does the use 
of efficient coding yield higher accuracy than PCA or 
other methods (Table 1). The efficient coding strategy 
finds a projection space that, in contrast to the space 
found by PCA, projects the data cloud in a way that 
it achieves as close as possible mutual statistically 
independent across dimensions. The characteristics of 
diabetics and non-diabetics happened to have different 
class means in the new space, which improved the 
cluster separation that was exploited by the classifier.

The contributions of this paper can be described 
as follows: 1) A method was proposed to increase 
performance in classifying diabetic and non-diabetics 
in relation to other studies in literature, as can be seen 
in Table 1. 2) New tests using exclusively non-invasive 
features were conducted, and similar results were 
achieved when using all the features (invasive and 
non-invasive) (see Table 3). This is significant because 
it increases the possibility of tracking the disease in 
remote areas, at low cost and in a reliable manner, 
because without the invasive features (which are 
obtained through procedures with considerable costs 
for screening, for example), data can be collected with 
simple devices. 3) The generalization of the method 
in relation to diabetes was also tested on two new 
databases, of African–Americans and Brazilians, the 
latter of which had not been used in any other study 
of this kind in literature. The findings from these new 
tests are similar to those from other tests using the 
PIMA database (see Table 4).

Efficient coding was the key to simplify the 
processing complexity of the original features in a 
new simple and robust representation. This new space 
can be seen as a representation of what independently 
describes diabetics and non-diabetics, because the 
new representation is concise and non-redundant.
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